Module 11: Additional Topics

Graph Theory and Applications

Topics:

• Introduction to Graph Theory
• Representing (undirected) graphs
• Basic graph algorithms
Consider the following:

- **Traveling Salesman Problem (TSP):** Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.
What does the TSP have in common with the following problems?

- Placement of new fire stations in a city to provide best coverage to all residents
- Ranking of "importance" of web pages by Google's PageRank algorithm
- Scheduling of final exams so they do not conflict
- Arranging components on a computer chip
- Analyzing strands of DNA
- Binary Search Trees
They all fall within the field of **GRAPH THEORY**

Non-conflicting exams

PageRank Algorithm
Undirected Simple Graphs

An undirected simple graph G is a set V, of vertices, and a set E, of unordered distinct pairs from V, called edges. We write $G=(V,E)$.
Graph Terminology

• If \((v_k, v_p)\) is an edge, we say that \(v_k\) and \(v_p\) are **neighbours**, and are **adjacent**. Note that \(k\) and \(p\) must be different.

• The number of neighbours of a vertex is also called its **degree**

• A sequence of nodes \(v_1, v_2, \ldots, v_k\) is a **path** of length \(k-1\) if \((v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k)\) are all edges
 – If \(v_1 = v_k\), this is called a **cycle**

• A graph \(G\) is **connected** if there exists a path through all vertices in \(G\)
Interesting Results on Graphs

Let $n =$ number of vertices, and $m =$ number of edges:

1. $m \leq \frac{n(n - 1)}{2}$
2. The number of graphs on n vertices is $2^{\frac{n(n-1)}{2}}$
3. The sum of the degrees over all vertices is $2m$.
How can we store information about graphs in Python?

• We need to store labels for the vertices
 – These could be strings or integers

• We need to store both endpoints using the labels on the vertices.

• We will consider three different implementations for undirected, unweighted graphs
Implementation 1: Vertex and Edge Lists

- \(V = [v_1, v_2, v_3, \ldots, v_m] \),
- \(E = [e_1, e_2, e_3, \ldots, e_m] \), where edge \(e_j = [a, b] \) when vertices \(a \) and \(b \) are connected by an edge

\[
\begin{align*}
V &= [6, 4, 5, 3, 2, 1] \\
E &= [[6, 4], [4, 5], [4, 3], [3, 2], [5, 2], [1, 2], [5, 1]]
\end{align*}
\]
Implementation 2: Adjacency list

• For each vertex:
 – Store the labels on its neighbours in a list

• We will use a dictionary
 – Keys: labels of vertices
 • Recall: integers or strings can be keys
 – Associated values: List of neighbours (adjacent vertices)
Example:

\{1: [2, 5],
 2: [1, 3, 5],
 3: [2, 4],
 4: [3, 5, 6],
 5: [1, 2, 4],
 6: [4] \}
Implementation 3: Adjacency Matrix

• For simplicity, assume vertices are labelled 0, ..., \(n - 1 \)

• Create an \(nxn \) matrix for \(G \)

• If there is an edge connecting \(i \) and \(j \):
 - Set \(G[i][j] = 1 \),
 - Set \(G[j][i] = 1 \)

• Otherwise, set these values to 0
Example:

G:

<table>
<thead>
<tr>
<th>vertex</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0, 1, 0, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[1, 0, 1, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[0, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0, 0, 1, 0, 1, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[1, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[0, 0, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing the implementations on simple tasks

- Determine if two vertices are neighbours.
- Find all the neighbours of a vertex.

Which implementation to use?
- We'll use the adjacency list (a good case could also be made for the adjacency matrix).
Graph Traversals

• Determine all vertices of G that can be reached from a starting vertex
• There can be different types of traversals
• If you find all vertices starting from v, the graph is *connected*
• If not all vertices can be reached, a *connected component* containing v has been found
• Must determine a way to ensure we do not cycle indefinitely
Applications of traversals

• Finding path between two vertices
• Finding connected components
• Tracing garbage collection in programs (managing memory)
• Shortest path between two points
• Planarity testing
• Solving puzzles like mazes
• Graph colouring
One approach: Breadth-first search Traversal (bfs)

1. Choose a starting point v
2. Visit all the neighbours of v
3. Then, visit all of the neighbours of the neighbours of v, etc.
4. Repeat until all reachable vertices are visited
5. Need some way to avoid visiting edges more than once
6. Note: there may be more than one bfs ordering of a graph, starting from v.
Implementation of bfs traversal

def bfs(graph, v):
 all = []
 Q = []
 Q.append(v)
 while Q != []:
 v = Q.pop(0)
 all.append(v)
 for n in graph[v]:
 if n not in Q and n not in all:
 Q.append(n)
 return all
Starting bfs from 0 (1)

• Start from v=0
• all = []
• Q = [0]
 – v = 0
 – all = [0]
 – Neighbours of 0: 1,4
 • Q = [1,4]
Continuing bfs (2)

- $Q = [1, 4]$
- $v = 1$
- $all = [0, 1]$
- Neighbours of 1: 0, 2, 3
 - $Q = [4, 2, 3]$
Continuing bfs (3)

- \(Q: [4, 2, 3] \)
- \(v = 4 \)
- \(all = [0,1,4] \)
- Neighbours of 4: 0,3
 - No vertices added to \(Q \)
- \(Q= [2,3] \)
- \(v = 2 \)
- \(all = [0,1,4,2] \)
- Neighbours of 2: 1,6 \(\rightarrow Q = [3,6] \)
Continuing bfs (4)

- Q: [3, 6]
- v = 3
- all = [0, 1, 4, 2, 3]
- Neighbours of 3: 1, 4, 5
 - Q = [6, 5]
- Q = [6, 5]
- v = 6
- all = [0, 1, 4, 2, 3, 6]
- Neighbours of 6: 2, 7, 8
 - Q = [5, 7, 8]
Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0,1,4,2,3,6,5]
- Neighbours of 5: 3,8 (Q unchanged)
- Q = [7,8]
- v = 7
- all = [0,1,4,2,3,6,5,7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- v = 8
- all = [0,1,4,2,3,6,5,7,8]
- Neighbours of 8: 5,6 (Q unchanged)
- Q is empty
Another approach: depth-first traversal (dfs)

• Choose a starting point v
• Proceed along a path from v as far as possible
• Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called \textit{backtracking})
 – Repeat while unvisited, reachable vertices remain
• Note: there may be more than one dfs ordering of a graph, starting from v.
def dfs(graph, v):
 visited = []
 S = [v]
 while S != []:
 v = S.pop()
 if v not in visited:
 visited.append(v)
 for w in graph[v]:
 if w not in visited:
 S.append(w)
 return visited
Breadth first vs depth first Searches

• Both need an additional list to store needed information:
 – BFS uses Q:
 • Add to the end and remove from the front
 • Called a Queue
 – DFS uses S:
 • Add to the end and remove from the end
 • Called a Stack
 – Stacks and Queues are both very useful in CS
Extension: Weighted edges

- Each edge has an associated weight. It might represent:
 - Distance between cities
 - Cost to move between locations
 - Capacity of a route
 - Probability of moving from one web page to another
Adjust adjacency list to include weights

• Adjust our adjacency list to store weights with each edge

 \{ 1: [[[2, 2], [4, 5]]],
 2: [[[1, 2], [3, 14]],
 [[4, 5], [5, 4]]],
 3: [[[2, 14], [5, 34]]],
 4: [[[1, 5], [2, 5], [5, 58]]],
 5: [[[2, 4], [3, 34], [4, 58]]] \}
Other types of graphs

- Edges can be directed – from one vertex to another
- Directed edges can have weights as well
- Exercise: Think about how directions change our representations
Goals of Module 11

• Understand basic graph terminology
• Understand representation of graphs in Python
• Understand breadth-first and depth-first search traversals