Module 11: Additional Topics

Graph Theory and Applications

Topics:

• Introduction to Graph Theory
• Representing (undirected) graphs
• Basic graph algorithms
Consider the following:

- **Traveling Salesman Problem (TSP):** Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.
What does the TSP have in common with the following problems?

• Placement of new fire stations in a city to provide best coverage to all residents
• Ranking of "importance" of web pages by Google's PageRank algorithm
• Scheduling of final exams so they do not conflict
• Arranging components on a computer chip
• Analyzing strands of DNA
• Binary Search Trees
They all fall within the field of **GRAPH THEORY**

Non-conflicting exams

PageRank Algorithm
Undirected Simple Graphs

An undirected simple graph G is a set V, of vertices, and a set E, of unordered distinct pairs from V, called edges. We write $G=(V,E)$.

\begin{itemize}
 \item Vertices: 1, 2, 3, 4, 5, 6
 \item Edges: (1,2), (2,3), (3,4), (4,5), (5,6), (6,1)
\end{itemize}
Graph Terminology

• If \((v_k, v_p)\) is an edge, we say that \(v_k\) and \(v_p\) are \textit{neighbours}, and are \textit{adjacent}. Note that \(k\) and \(p\) must be different.

• The number of neighbours of a vertex is also called its \textit{degree}

• A sequence of nodes \(v_1, v_2, ..., v_k\) is a \textit{path} of length \(k-1\) if \((v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)\) are all edges
 – If \(v_1 = v_k\), this is called a \textit{cycle}

• A graph \(G\) is \textit{connected} if there exists a path through all vertices in \(G\)
Interesting Results on Graphs

Let n = number of vertices,
and m = number of edges:

1. $m \leq n(n - 1)/2$
2. The number of graphs on n vertices is $2^{n(n-1)/2}$
3. The sum of the degrees over all vertices is $2m$.
How can we store information about graphs in Python?

• We need to store labels for the vertices
 – These could be strings or integers

• We need to store both endpoints using the labels on the vertices.

• We will consider three different implementations for undirected, unweighted graphs
Implementation 1: Vertex and Edge Lists

- \(V = [v_1, v_2, v_3, \ldots, v_m] \),
- \(E = [e_1, e_2, e_3, \ldots, e_m] \), where edge \(e_j = [a, b] \) when vertices \(a \) and \(b \) are connected by an edge.

\[
V = [6, 4, 5, 3, 2, 1] \\
E = [[6, 4], [4, 5], [4, 3], [3, 2], [5, 2], [1, 2], [5, 1]]
\]
Implementation 2: Adjacency list

• For each vertex:
 – Store the labels on its neighbours in a list
• We will use a dictionary
 – Keys: labels of vertices
 • Recall: integers or strings can be keys
 – Associated values: List of neighbours (adjacent vertices)
Example:

\{1: [2, 5], \\
2: [1, 3, 5], \\
3: [2, 4], \\
4: [3, 5, 6], \\
5: [1, 2, 4], \\
6: [4] \}
Implementation 3: Adjacency Matrix

- For simplicity, assume vertices are labelled 0, ..., \(n - 1 \)
- Create an \(nxn \) matrix for \(G \)
- If there is an edge connecting \(i \) and \(j \):
 - Set \(G[i][j] = 1 \),
 - Set \(G[j][i] = 1 \)
- Otherwise, set these values to 0
Example:

G:

<table>
<thead>
<tr>
<th>vertex</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0, 1, 0, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[1, 0, 1, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[0, 1, 0, 1, 0, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0, 0, 1, 0, 1, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[1, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[0, 0, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing the implementations on simple tasks

• Determine if two vertices are neighbours.
• Find all the neighbours of a vertex.

Which implementation to use?
• We'll use the adjacency list (a good case could also be made for the adjacency matrix).
Graph Traversals

• Determine all vertices of G that can be reached from a starting vertex
• There can be different types of traversals
• If you find all vertices starting from v, the graph is *connected*
• If not all vertices can be reached, a *connected component* containing v has been found
• Must determine a way to ensure we do not cycle indefinitely
Applications of traversals

• Finding path between two vertices
• Finding connected components
• Tracing garbage collection in programs (managing memory)
• Shortest path between two points
• Planarity testing
• Solving puzzles like mazes
• Graph colouring
One approach: Breadth-first search Traversal (bfs)

• Choose a starting point v
• Visit all the neighbours of v
• Then, visit all of the neighbours of the neighbours of v, etc.
• Repeat until all reachable vertices are visited
• Need some way to avoid visiting edges more than once
• Note: there may be more than one bfs ordering of a graph, starting from v.
Implementation of bfs traversal

def bfs(graph, v):
 all = []
 Q = []
 Q.append(v)
 while Q != []:
 v = Q.pop(0)
 all.append(v)
 for n in graph[v]:
 if n not in Q and n not in all:
 Q.append(n)
 return all
Starting bfs from 0 (1)

• Start from \(v=0 \)
• \(\text{all} = [] \)
• \(Q = [0] \)
 – \(v = 0 \)
 – \(\text{all} = [0] \)
 – Neighbours of 0: 1,4
 • \(Q = [1,4] \)
Continuing bfs (2)

- $Q = [1, 4]$
- $v = 1$
- $all = [0,1]$
- Neighbours of 1: 0,2,3
 - $Q = [4,2,3]$
Continuing bfs (3)

- $Q: [4, 2, 3]$
- $v = 4$
- $all = [0, 1, 4]$
- Neighbours of 4: 0, 3
 - No vertices added to Q
- $Q = [2, 3]$
- $v = 2$
- $all = [0, 1, 4, 2]$
- Neighbours of 2: 1, 6 $\rightarrow Q = [3, 6]$
Continuing bfs (4)

• Q: [3, 6]
• v = 3
• all = [0,1,4,2,3]
• Neighbours of 3: 1,4,5
 – Q = [6,5]
• Q = [6, 5]
• v = 6
• all = [0,1,4,2,3,6]
• Neighbours of 6: 2,7,8
 – Q = [5,7,8]
Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0, 1, 4, 2, 3, 6, 5]
- Neighbours of 5: 3, 8 (Q unchanged)
- Q = [7, 8]
- v = 7
- all = [0, 1, 4, 2, 3, 6, 5, 7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- v = 8
- all = [0, 1, 4, 2, 3, 6, 5, 7, 8]
- Neighbours of 8: 5, 6 (Q unchanged)
- Q is empty
Another approach: depth-first traversal (dfs)

- Choose a starting point v
- Proceed along a path from v as far as possible
- Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called backtracking)
 - Repeat while unvisited, reachable vertices remain
- Note: there may be more than one dfs ordering of a graph, starting from v.
def dfs(graph, v):
 visited = []
 S = [v]
 while S != []:
 v = S.pop()
 if v not in visited:
 visited.append(v)
 for w in graph[v]:
 if w not in visited:
 S.append(w)
 return visited
Breadth first vs depth first Searches

• Both need an additional list to store needed information:
 – BFS uses Q:
 • Add to the end and remove from the front
 • Called a Queue
 – DFS uses S:
 • Add to the end and remove from the end
 • Called a Stack

– Stacks and Queues are both very useful in CS
Weighted edges

• Each edge has an associated weight. It might represent:
 – Distance between cities
 – Cost to move between locations
 – Capacity of a route
 – Probability of moving from one web page to another
Adjust adjacency list to include weights

- Adjust our adjacency list to store weights with each edge

\[
\begin{align*}
1: & \quad [[2, 2], [4, 5]], \\
2: & \quad [[1, 2], [3, 14], [4, 5], [5, 4]], \\
3: & \quad [[2, 14], [5, 34]], \\
4: & \quad [[1, 5], [2, 5], [5, 58]], \\
5: & \quad [[2, 4], [3, 34], [4, 58]]
\end{align*}
\]
Shortest Paths Problem

Problem: Given a weighted graph, G, and vertex s (called the source), find the path of least weight from s to each of the other vertices in the graph.

The total weight of a path is the sum of the weights of all its edges.

Assumptions:
• Weights are all positive
• There exists at least one path from s to each vertex
Dijkstra's Algorithm
for the Shortest Paths Problem

• Famous algorithm in CS
• Example of a **Greedy Algorithm**
 – At each step, the locally optimum choice is made in hopes of finding the global optimum.
Example of Dijkstra's Algorithm (1)

- Find shortest paths from: \(a\)
- Keep track of the vertices that you know the shortest path for, \(S = [a]\) to start
- For all vertices, determine the weight of the path from \(a\) using only vertices in \(S\). Note that some vertices are not reachable yet.
Continuing Dijkstra's Algorithm (2)

\[S = [a] \]

D: Distances through \(S \)

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>2</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>3</td>
<td>(\infty)</td>
<td></td>
</tr>
</tbody>
</table>

Greedy: Choose the vertex with the minimum positive distance from \(a \) through \(S \): \(b \)

Add \(b \) to \(S \)
Continuing Dijkstra's Algorithm (3)

\[S = [a, b] \]

D: Distances through \(S \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>9</td>
<td>(\infty)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Greedy: Choose the vertex with the minimum positive distance from \(a \) through \(S \): \(e \) and \(f \)

Add \(e \) to \(S \) (random choice)
Continuing Dijkstra's Algorithm (4)

\[S = \{a, b, e\} \]

D: Distances through \(S \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Greedy: Choose the vertex with the minimum positive distance from a through \(S \): \(f \)

Add \(f \) to \(S \)
Continuing Dijkstra's Algorithm (5)

$S = [a, b, e, f]$

D: Distances through S

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Greedy: Choose the vertex with the minimum positive distance from a through S: c and d

Add d to S (random choice)
Continuing Dijkstra's Algorithm (6)

$S = [a, b, e, f, d]$

D: Distances through S

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Greedy: Choose the vertex with the minimum positive distance from a through S: c

Add c to S
Continuing Dijkstra's Algorithm (7)

Length of shortest path from \(a \) to each of the vertices:

\[
\begin{array}{cccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} \\
0 & 2 & 7 & 7 & 3 & 3 \\
\end{array}
\]

Note: Can modify basic Dijkstra's algorithm to keep track of edges used in shortest paths.
More on Greedy algorithms

• Often used to solve very difficult problems (like the Travelling Salesman problem).

• Depending on the problem, may not always provide an optimal solution.
 – Often acceptable if all known algorithms for an optimal solution have exponential runtime
Other types of graphs

• Edges can be directed – from one vertex to another
• Directed edges can have weights as well
• Trees are special forms of graphs
Goals of Module 11

- Understand basic graph terminology
- Understand representation of graphs in Python
- Understand breadth-first and depth-first search traversals
- Understand Dijkstra's algorithm