Module 09: Additional Options for Organizing Data

Topics:

• Dictionaries
• Classes

Readings: ThinkP 11, 15, 16, 17
Collections of key-value pairs

• In CS115, you studied collections of key-value pairs, where
 – Key: describes something basic and unique about an object (e.g. student ID, SIN, cell’s DNA signature)
 – Value: a property of that object (e.g. student’s major, person name, type of organism)

• Key-value pairs are basic to computer applications:
 – Logging onto a server with your userid and password
 – Opening up a document by specifying its name
Dictionaries, or key-value collections

- Built into Python
- Use `{}` for dictionaries
- Very fast – key retrieval is essentially $O(1)$
- The type used for the key must be immutable (e.g. Str, Int)
- Any type can be used for the value
- Keys are not sorted or ordered
- No reverse look-up by value (brute-force only)
Creating Dictionaries

• Create a dictionary by listing multiple `key:value` pairs

```python
wavelengths = {'blue': 400, 'green': 500, 'yellow': 600, 'red': 700}
```

• Create an empty dictionary

```python
students = {}
```
Using a dictionary

• Retrieve a value by using its key as an index
 wavelengths['blue'] => 400

• Update a value by using its key as an index
 wavelengths['red'] = 720

• Add a value by using its key as an index
 wavelengths['orange'] = 630
Dictionary methods and functions

Module is called \texttt{dict}

- \texttt{len(d)} => number of pairs in \texttt{d}
- \texttt{d.keys()} => a view of keys in \texttt{d}
- \texttt{d.values()} => a view of values in \texttt{d}
 - Views can be used in for loops
- \texttt{k in d} => \texttt{True} if \texttt{k} is a key in \texttt{d}
- \texttt{d.pop(k)} => value for \texttt{k}, and removes \texttt{k:value} from \texttt{d}
- See \texttt{dir(dict)} for more
 - Automatically imported in your program
Specifying a dictionary’s type

Since we have both keys and values, both must be specified:

\(\text{(dictof Key	extunderscore type Value	extunderscore type)} \)

Example: \textit{wavelengths} is of type \(\text{(dictof Str Nat)} \)

\text{requires: keys are nonempty strings}
\text{Each value} > 0
When to use dictionaries

• Generally faster to look up keys in a dictionary than in a list
• Only use dictionaries if the order is not important
 – If order is important, use a list instead
• Very useful when counting number of times an item occurs in a collection (e.g. characters or words in a document)
• Note: From Python 3.6, dictionaries are stored in the order they are created, but we will not rely on that property in CS116.
When are two dictionaries equal?

• Two dictionaries are equal if:
 – They have the same set of keys, and
 – The value associated with each key is equal in both dictionaries

\{1:'a', 3:'c'} == \{3:'c', 1:'a'}
\[\Rightarrow\] True
Example: Counting number of times distinct characters occur in a string

```python
def character_count (sentence):
    "character_count: Str->(dictof Str Nat)"

    characters = {}
    for char in sentence:
        if char in characters:
            characters[char] = characters[char] + 1
        else:
            characters[char] = 1
    return characters
```

Next, find the most common character in a string

```python
def most_common_character(sentence):
    '''most_common_character: Str -> Str
    requires: len(sentence) > 0'''

    chars = character_count(sentence)
    most_common = ""
    max_times = 0

    for curr_char in chars:
        if chars[curr_char] > max_times:
            most_common = curr_char
            max_times = chars[curr_char]

    return most_common
```
Run-time basics for important dictionary operations

For a dictionary d contains n keys, *assume* the following runtimes:

- $d[k]$ is $O(1)$
- $d[k] = v$ is $O(1)$
- Checking if k in d is $O(1)$
- $d.pop(k)$ is $O(1)$
- $\text{list}(d.keys())$ is $O(n)$
- $\text{list}(d.values())$ is $O(n)$

Note: the dictionary runtimes are more complicated than this, but we will work with these assumptions
Exercise

Write a Python function `common_keys` that consumes two dictionaries with a common key type, and returns a list of all keys which occur in both dictionaries.
Dictionaries are mutable

• Dictionaries can be mutated:
 – Key:Value pairs added
 – Key:Value pairs deleted
 – Values updated for a particular Key

• Like lists, dictionaries can have aliases as well. Note that the following mutates \texttt{d1}.

\begin{verbatim}
d1 = {3:'three', 2:'two'}
d2 = d1
d2[1] = 'one'
\end{verbatim}
A function can mutate a dictionary too

def purge(d):
 keys = list(d.keys())
 for k in keys:
 if d[k] == "":
 d.pop(k)

Suppose
dt = {2:'xx', 1:'x', 0:'',
 4:'xxxx', -3:'', 3:'xxx'},
what is the value of dt after calling purge(dt)?
Recall: Structures in Racket

To declare a new structure in Racket:

```
(define-struct Country
  (continent leader population))
;; A Country is a
;; (make-Country Str Str Nat)
```
Classes: like structures (but different)

To declare a similar thing in Python:

class Country:
 '''Fields: continent (Str),
 leader (Str),
 population (Nat)'''
Using classes

• Python includes a very basic set-up for classes
• We will include several very important "magic" methods in our classes to help with
 – Creating objects
 – Printing objects
 – Comparing objects
• These methods will use the local name `self` to refer to the object being used
Constructing objects with `__init__`

```python
class Country:
    '''Fields: continent (Str), leader (Str),
            population (Nat)'''
    def __init__(self, cont, lead, pop):
        self.continent = cont
        self.leader = lead
        self.population = pop

to create a Country object:
canada = Country("North America", "Trudeau", 35344962)
```
Memory model for classes

```python
canada = Country("North America", "Trudeau", 35344962)
```

<table>
<thead>
<tr>
<th>Continent</th>
<th>"North America"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>"Trudeau"</td>
</tr>
<tr>
<td>Population</td>
<td>35344962</td>
</tr>
</tbody>
</table>
Accessing the fields of an object

```python
india = Country("Asia", "Modi", 1241491960)
print (india.continent)
print (india.leader == "Modi")
india.population += 1
```
__repr__ : Very helpful for debugging

>>> print(canada)
<__main__.Country instance at 0x0286EC10>
However, including the following
class Country:
 # __init__ code ...
 def __repr__(self):
 return "CNT: {0.continent}; L: {0.leader}; POP: {0.population}".format(self)
makes things much better!

>>> print(canada)
CNT: North America; L: Trudeau; POP: 34500000
Comment on **`__repr__`**

- In practice, most Python programmers use **`__str__`** instead of **`__repr__`**
- The functions play very similar roles, but, for what we do in CS116, **`__repr__`** is a more convenient, so is used instead.
Aliases

```python
india_alias = india
india_alias.population += 1
```

The population of both `india` and `india_alias` is increased (since there is only one `Country` object here)
What if you want another copy of an object, rather than an alias?

• Create a new object, and set all the fields

```python
india_copy = Country
            (india.continent, india.leader, india.population)
```
\[
\begin{align*}
 r &= \text{Country}("A", "B", 10) \\
 s &= r \\
 t &= \text{Country}("A", "B", 10)
\end{align*}
\]
Comparing objects for equality

• Are two objects actually aliases? Use `is`

  ```python
  india_alias is india ➝ True
  ```

  ```python
  india_copy is india ➝ False
  ```

• Are the fields of two objects equal?

 – Would like

    ```python
    india_copy == india ➝ True
    ```

 – But, that is not the default in Python

 – We need to provide another function first
__eq__ : specifying object equality

For objects \texttt{x,y}, \quad \texttt{x==y} \Rightarrow \texttt{True}

only if \texttt{x} and \texttt{y} are aliases

If we want \texttt{x==y} \Rightarrow \texttt{True} if the corresponding fields are equal,
we can specify this by providing a function called __eq__

class Country:
 # __init__ and __str__ code ...
 def __eq__(self, other):
 return isinstance(other, Country) and
 self.continent == other.continent and\n self.leader == other.leader and\n self.population == other.population
Exercise: Write a function that returns a Country with higher population

```python
def higher_population(c1, c2):
    "higher_population: Country Country -> Country"
    if c1.population >= c2.population:
        return c1
    else:
        return c2

canada = Country("North America", "Trudeau", 34108752)
us = Country("North America", 'Obama', 311591917)
check.expect("T1", higher_population(canada, us), us)
```
Exercise

Write a function

```python
leader_most_populous
```

that consumes a nonempty list of `Country` objects, and returns the leader of the most populous country in the list.
There's a lot more to Python classes

• Use `dir(c)` to see available methods and fields, where `c` is object or the type name

• Classes join a related set of values into a single compound object (like Racket structures)

• With classes, we can attach methods to types of objects (like for `str`, `list`, `dict`).

• Class methods are functions defined in the class. They can be called using dot notation.
Class Methods

• Functions defined within the class (should be indented the same as `__init__`)

• First parameter is always `self`:
 – The function can mutate the fields of `self`.
 – The function can use the fields of `self` in calculations and comparisons.

• Class methods are called using the same dot notation as the string and list methods.

• Class methods are like other functions. They may
 – Return values (or not)
 – Print information (or not)
 – Mutates parameters (or not)
Example **Country** class method:

```python
# Must be indented same amount as `__init__`
def election(self, winner):
    ''' updates leader to winner, and prints a message about the winner
    effects: mutates self
    prints two lines

election: Country -> None

Example: if c = Country("US", "Obama", 307006550)
calling, c.election("Trump"), mutates c to Country("US", "Trump", 307006550) and prints Election Results:
Trump replaces Obama as leader
'''```
Implementation of `election` method:

```python
Must be indented same amount as `__init__`

def election(self, winner):
 print("Election Results:")
 if self.leader == winner:
 print("{0} re-elected".format(
 self.leader))
 else:
 print("{0} replaces {1} as leader".format(
 winner, self.leader))
 self.leader = winner
```

Using `election`

```python
>>> us = Country("North America",
 "Obama", 307006550)

>>> us.election("Trump")
Election Results:
Trump replaces Obama as leader

>>> us.leader
Trump
```

*Note: Tests for `election` appear outside the class.*
Object-oriented design

• Classes are used to associate methods with the objects they work on
• Classes and modules allow programmers to divide a large project into smaller parts
• Different people can work on different parts
• Managing this division (and putting the pieces back together) is a key part of software engineering
• See CS246 or CS430 to learn more
Goals of Module 09

• Use dictionaries to associate keys and values for extremely fast lookup
• Be able to define a class to group related information into a single compound object
• Be able to write class methods as well as other functions that use class objects
• Be able to understand (not write) the "magic" methods (\_	exttt{init\_}, \_	exttt{repr\_}, \_	exttt{eq\_})