Module 11: Additional Topics

Graph Theory and Applications

Topics:

• Introduction to Graph Theory
• Representing (undirected) graphs
• Basic graph algorithms
Consider the following:

- **Traveling Salesman Problem (TSP):** Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.
What does the TSP have in common with the following problems?

• Placement of new fire stations in a city to provide best coverage to all residents
• Ranking of "importance" of web pages by Google's PageRank algorithm
• Scheduling of final exams so they do not conflict
• Arranging components on a computer chip
• Analyzing strands of DNA
• Binary Search Trees
They all fall within the field of **GRAPH THEORY**

Non-conflicting exams

![Graph of non-conflicting exams]

PageRank Algorithm

![Graph of PageRank algorithm]

CS116 Spring 2020 11: Graph Theory and Applications
Undirected Simple Graphs

An undirected simple *graph* G is a set V, of *vertices*, and a set E, of unordered distinct pairs from V, called *edges*. We write $G=(V,E)$.

CS116 Spring 2020 11: Graph Theory and Applications
Graph Terminology

• If \((v_k, v_p)\) is an edge, we say that \(v_k\) and \(v_p\) are neighbours, and are adjacent. Note that \(k\) and \(p\) must be different.
• The number of neighbours of a vertex is also called its degree
• A sequence of nodes \(v_1, v_2, \ldots, v_k\) is a path of length \(k-1\) if \((v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k)\) are all edges
 – If \(v_1 = v_k\), this is called a cycle
• A graph \(G\) is connected if there exists a path through all vertices in \(G\)
Interesting Results on Graphs

Let \(n = \) number of vertices,
and \(m = \) number of edges:

1. \(m \leq \frac{n(n - 1)}{2} \)
2. The number of graphs on \(n \) vertices is \(2^{\frac{n(n-1)}{2}} \)
3. The sum of the degrees over all vertices is \(2m \).
How can we store information about graphs in Python?

• We need to store labels for the vertices
 – These could be strings or integers
• We need to store both endpoints using the labels on the vertices.

• We will consider three different implementations for undirected, unweighted graphs
Implementation 1:
Vertex and Edge Lists

- \(V = [v_1, v_2, v_3, ..., v_m] \),
- \(E = [e_1, e_2, e_3, ..., e_m] \), where
 edge \(e_j = [a, b] \) when vertices \(a \) and \(b \) are connected by an edge

\[
\begin{align*}
V &= [6, 4, 5, 3, 2, 1] \\
E &= [[6, 4], [4, 5], [4, 3], [3, 2], [5, 2], [1, 2], [5, 1]]
\end{align*}
\]
Implementation 2: Adjacency list

• For each vertex:
 – Store the labels on its neighbours in a list

• We will use a dictionary
 – Keys: labels of vertices
 • Recall: integers or strings can be keys
 – Associated values: List of neighbours (adjacent vertices)
Example:

\{1: [2, 5], \\
 2: [1, 3, 5], \\
 3: [2, 4], \\
 4: [3, 5, 6], \\
 5: [1, 2, 4], \\
 6: [4] \}
Implementation 3: Adjacency Matrix

- For simplicity, assume vertices are labelled $0, \ldots, n - 1$
- Create an n by n matrix for G
- If there is an edge connecting i and j:
 - Set $G[i][j] = 1$,
 - Set $G[j][i] = 1$
- Otherwise, set these values to 0

CS116 Spring 2020 11: Graph Theory and Applications
Example:

G:

<table>
<thead>
<tr>
<th>vertex</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0, 1, 0, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[1, 0, 1, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[0, 1, 0, 1, 0, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0, 0, 1, 0, 1, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[1, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[0, 0, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing the implementations on simple tasks

• Determine if two vertices are neighbours.
• Find all the neighbours of a vertex.

Which implementation to use?
• We'll use the adjacency list (a good case could also be made for the adjacency matrix).
Graph Traversals

• Determine all vertices of G that can be reached from a starting vertex
• There can be different types of traversals
• If you find all vertices starting from v, the graph is connected
• If not all vertices can be reached, a connected component containing v has been found
• Must determine a way to ensure we do not cycle indefinitely
Applications of traversals

• Finding path between two vertices
• Finding connected components
• Tracing garbage collection in programs (managing memory)
• Shortest path between two points
• Planarity testing
• Solving puzzles like mazes
• Graph colouring
One approach: Breadth-first search Traversal (bfs)

- Choose a starting point v
- Visit all the neighbours of v
- Then, visit all of the neighbours of the neighbours of v, etc.
- Repeat until all reachable vertices are visited
- Need some way to avoid visiting edges more than once
- Note: there may be more than one bfs ordering of a graph, starting from v.
Sample bfs orders

• A, C, E, B, I, F, G, D, H
• A, E, C, I, B, H, D, G, F
• B, E, F, G, D, I, A, H, C
• B, D, E, F, G, I, A, C, H
• H, I, C, B, D, A, E, F, G

plus more ...
Implementing bfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – all includes all "visited" vertices
 • Vertices are appended to the end
 – Q includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the front of Q
Implementation of bfs traversal

```python
def bfs(graph, v):
    all = []
    Q = []
    Q.append(v)
    while Q != []:
        v = Q.pop(0)
        all.append(v)
        for n in graph[v]:
            if n not in Q and n not in all:
                Q.append(n)
    return all
```
Starting bfs from 0 (1)

• Start from $v=0$
• all = []
• Q = [0]
 – $v = 0$
 – all = [0]
 – Neighbours of 0: 1, 4
 • Q = [1, 4]
Continuing bfs (2)

- Q = [1, 4]
- v = 1
- all = [0,1]
- Neighbours of 1: 0,2,3
 - Q = [4,2,3]
Continuing bfs (3)

- Q: [4, 2, 3]
- v = 4
- all = [0, 1, 4]
- Neighbours of 4: 0, 3
 - No vertices added to Q
- Q = [2, 3]
- v = 2
- all = [0, 1, 4, 2]
- Neighbours of 2: 1, 6 → Q = [3, 6]
Continuing bfs (4)

- Q: [3, 6]
- v = 3
- all = [0,1,4,2,3]
- Neighbours of 3: 1,4,5
 - Q = [6,5]
- Q = [6, 5]
- v = 6
- all = [0,1,4,2,3,6]
- Neighbours of 6: 2,7,8
 - Q = [5,7,8]
Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0,1,4,2,3,6,5]
- Neighbours of 5: 3, 8 (Q unchanged)
- Q = [7, 8]
- v = 7
- all = [0,1,4,2,3,6,5,7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- v = 8
- all = [0,1,4,2,3,6,5,7,8]
- Neighbours of 8: 5, 6 (Q unchanged)
- Q is empty
Another approach: depth-first traversal (dfs)

• Choose a starting point v
• Proceed along a path from v as far as possible
• Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called backtracking)
 — Repeat while unvisited, reachable vertices remain
• Note: there may be more than one dfs ordering of a graph, starting from v.
Sample dfs orders

- A, C, I, H, B, F, D, G, E
- A, E, B, G, D, I, H, C, F
- B, F, G, D, I, C, A, E, H
- H, I, B, F, G, D, E, A, C

plus more ...
Implementing dfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – all includes all "visited" vertices
 • Vertices are appended to the end
 – S includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the end of S as well
A depth first search traversal solution

def dfs(graph, v):
 all = []
 S = [v]
 while S != []:
 v = S.pop()
 if v not in all:
 all.append(v)
 for w in graph[v]:
 if w not in all:
 S.append(w)
 return all
Breadth first vs depth first Searches

• Both need an additional list to store needed information:
 – BFS uses Q:
 • Add to the end and remove from the front
 • Called a Queue
 – DFS uses S:
 • Add to the end and remove from the end
 • Called a Stack
 – Stacks and Queues are both very useful in CS
Extension: Weighted edges

• Each edge has an associated weight. It might represent:
 – Distance between cities
 – Cost to move between locations
 – Capacity of a route
 – Probability of moving from one web page to another
Adjust adjacency list to include weights

- Adjust our adjacency list to store weights with each edge

```
{1: [[2, 2], [4, 5]],
  2: [[1, 2], [3, 14], [4, 5], [5, 4]],
  3: [[2, 14], [5, 34]],
  4: [[1, 5], [2, 5], [5, 58]],
  5: [[2, 4], [3, 34], [4, 58]]}
```
Other types of graphs

• Edges can be directed – from one vertex to another
• Directed edges can have weights as well
• *Exercise: Think about how directions change our representations*
Goals of Module 11

• Understand basic graph terminology
• Understand representation of graphs in Python
• Understand breadth-first and depth-first search traversals