Module 11: Additional Topics

Graph Theory and Applications

Topics:

• Introduction to Graph Theory
• Representing (undirected) graphs
• Basic graph algorithms
Consider the following:

- Traveling Salesman Problem (TSP): Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.
What does the TSP have in common with the following problems?

• Placement of new fire stations in a city to provide best coverage to all residents
• Ranking of "importance" of web pages by Google's PageRank algorithm
• Scheduling of final exams so they do not conflict
• Arranging components on a computer chip
• Analyzing strands of DNA
• Binary Search Trees
They all fall within the field of **GRAPH THEORY**

Non-conflicting exams

PageRank Algorithm
Undirected Simple Graphs

An undirected simple graph G is a set V, of vertices, and a set E, of unordered distinct pairs from V, called edges. We write $G=(V,E)$.
Graph Terminology

• If \((v_k, v_p)\) is an edge, we say that \(v_k\) and \(v_p\) are *neighbours*, and are *adjacent*. Note that \(k\) and \(p\) must be different.

• The number of neighbours of a vertex is also called its *degree*.

• A sequence of nodes \(v_1, v_2, ..., v_k\) is a *path* of length \(k-1\) if \((v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)\) are all edges.

 – If \(v_1 = v_k\), this is called a *cycle*.

• A graph \(G\) is *connected* if there exists a path through all vertices in \(G\).
Interesting Results on Graphs

Let \(n \) = number of vertices, and \(m \) = number of edges:

1. \(m \leq n(n - 1)/2 \)
2. The number of graphs on \(n \) vertices is \(2^{n(n-1)/2} \)
3. The sum of the degrees over all vertices is \(2m \).
How can we store information about graphs in Python?

- We need to store labels for the vertices
 - These could be strings or integers
- We need to store both endpoints using the labels on the vertices.

- We will consider three different implementations for undirected, unweighted graphs
Implementation 1: Vertex and Edge Lists

- \(V = [v_1, v_2, v_3, ..., v_m] \),
- \(E = [e_1, e_2, e_3, ..., e_m] \), where edge \(e_j = [a, b] \) when vertices \(a \) and \(b \) are connected by an edge.

\(V = [6, 4, 5, 3, 2, 1] \)
\(E = [[6, 4], [4, 5], [4, 3], [3, 2], [5, 2], [1, 2], [5, 1]] \)
Implementation 2: Adjacency list

- For each vertex:
 - Store the labels on its neighbours in a list
- We will use a dictionary
 - Keys: labels of vertices
 - Recall: integers or strings can be keys
 - Associated values: List of neighbours (adjacent vertices)
Example:

\{1: [2, 5], \\
 2: [1, 3, 5], \\
 3: [2, 4], \\
 4: [3, 5, 6], \\
 5: [1, 2, 4], \\
 6: [4] \}
Implementation 3: Adjacency Matrix

• For simplicity, assume vertices are labelled 0, ..., n − 1
• Create an \(nxn \) matrix for \(G \)
• If there is an edge connecting \(i \) and \(j \):
 – Set \(G[i][j] = 1 \),
 – Set \(G[j][i] = 1 \)
• Otherwise, set these values to 0
Example:

\[G = \begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & [0, 1, 0, 0, 1, 0] & & & & \\
1 & [1, 0, 1, 0, 1, 0] & & & & \\
2 & [0, 1, 0, 1, 0, 0] & & & & \\
3 & [0, 0, 1, 0, 1, 1] & & & & \\
4 & [1, 1, 0, 1, 0, 0] & & & & \\
5 & [0, 0, 0, 1, 0, 0] & & & & \\
\end{array} \]
Comparing the implementations on simple tasks

• Determine if two vertices are neighbours.
• Find all the neighbours of a vertex.

Which implementation to use?
• We'll use the adjacency list (a good case could also be made for the adjacency matrix).
Graph Traversals

• Determine all vertices of G that can be reached from a starting vertex
• There can be different types of traversals
• If you find all vertices starting from v, the graph is *connected*
• If not all vertices can be reached, a *connected component* containing v has been found
• Must determine a way to ensure we do not cycle indefinitely
Applications of traversals

- Finding path between two vertices
- Finding connected components
- Tracing garbage collection in programs (managing memory)
- Shortest path between two points
- Planarity testing
- Solving puzzles like mazes
- Graph colouring
One approach:
Breadth-first search Traversal (bfs)

• Choose a starting point \(v \)
• Visit all the neighbours of \(v \)
• Then, visit all of the neighbours of the neighbours of \(v \), etc.
• Repeat until all reachable vertices are visited
• Need some way to avoid visiting edges more than once
• Note: there may be more than one bfs ordering of a graph, starting from \(v \).
Sample bfs orders

• A, C, E, B, I, F, G, D, H
• A, E, C, I, B, H, D, G, F
• B, E, F, G, D, I, A, H, C
• B, D, E, F, G, I, A, C, H
• H, I, C, B, D, A, E, F, G

plus more ...
Implementing bfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – all includes all "visited" vertices
 • Vertices are appended to the end
 – Q includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the front of Q
Implementation of bfs traversal

def bfs(graph, v):
 all = []
 Q = []
 Q.append(v)
 while Q != []:
 v = Q.pop(0)
 all.append(v)
 for n in graph[v]:
 if n not in Q and
 n not in all:
 Q.append(n)
 return all
Starting bfs from 0 (1)

- Start from v=0
- all = []
- Q = [0]
 - v = 0
 - all = [0]
 - Neighbours of 0: 1,4
 - Q = [1,4]
Continuing bfs (2)

• Q = [1, 4]
• v = 1
• all = [0,1]
• Neighbours of 1: 0,2,3
 – Q = [4,2,3]
Continuing bfs (3)

- Q: [4, 2, 3]
- v = 4
- all = [0, 1, 4]
- Neighbours of 4: 0, 3
 - No vertices added to Q
- Q = [2, 3]
- v = 2
- all = [0, 1, 4, 2]
- Neighbours of 2: 1, 6 \(\rightarrow\) Q = [3, 6]
Continuing bfs (4)

- Q: [3, 6]
- v = 3
- all = [0,1,4,2,3]
- Neighbours of 3: 1,4,5
 - Q = [6,5]
- Q = [6, 5]
- v = 6
- all = [0,1,4,2,3,6]
- Neighbours of 6: 2,7,8
 - Q = [5,7,8]
Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0,1,4,2,3,6,5]
- Neighbours of 5: 3,8 (Q unchanged)
- Q = [7,8]
- v = 7
- all = [0,1,4,2,3,6,5,7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- v = 8
- all = [0,1,4,2,3,6,5,7,8]
- Neighbours of 8: 5,6 (Q unchanged)
- Q is empty
Another approach: depth-first traversal (dfs)

• Choose a starting point \(v \)
• Proceed along a path from \(v \) as far as possible
• Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called backtracking)
 — Repeat while unvisited, reachable vertices remain
• Note: there may be more than one dfs ordering of a graph, starting from \(v \).
Sample dfs orders

- A, C, I, H, B, F, D, G, E
- A, E, B, G, D, I, H, C, F
- B, F, G, D, I, C, A, E, H
- H, I, B, F, G, D, E, A, C

plus more ...
Implementing dfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – all includes all "visited" vertices
 • Vertices are appended to the end
 – S includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the end of S as well
A depth first search traversal solution

def dfs(graph, v):
 all = []
 S = [v]
 while S != []:
 v = S.pop()
 if v not in all:
 all.append(v)
 for w in graph[v]:
 if w not in all:
 S.append(w)
 return visited
Breadth first vs depth first searches

- Both need an additional list to store needed information:
 - BFS uses Q:
 - Add to the end and remove from the front
 - Called a Queue
 - DFS uses S:
 - Add to the end and remove from the end
 - Called a Stack
- Stacks and Queues are both very useful in CS
Extension: Weighted edges

• Each edge has an associated weight. It might represent:
 – Distance between cities
 – Cost to move between locations
 – Capacity of a route
 – Probability of moving from one web page to another
Adjust adjacency list to include weights

• Adjust our adjacency list to store weights with each edge

• \{1: \{2, 2\}, \{4, 5\}\},
 \{2: \{1, 2\}, \{3, 14\},
 \{4, 5\}, \{5, 4\}\},
 \{3: \{2, 14\}, \{5, 34\}\},
 \{4: \{1, 5\}, \{2, 5\}, \{5, 58\}\},
 \{5: \{2, 4\}, \{3, 34\}, \{4, 58\}\}\}
Other types of graphs

• Edges can be directed – from one vertex to another
• Directed edges can have weights as well
• Exercise: Think about how directions change our representations
Goals of Module 11

- Understand basic graph terminology
- Understand representation of graphs in Python
- Understand breadth-first and depth-first search traversals