Module 11: Additional Topics

Graph Theory and Applications

Topics:

• Introduction to Graph Theory
• Representing (undirected) graphs
• Basic graph algorithms
Consider the following:

• Traveling Salesman Problem (TSP): Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.
What does the TSP have in common with the following problems?

• Placement of new fire stations in a city to provide best coverage to all residents
• Ranking of "importance" of web pages by Google's PageRank algorithm
• Scheduling of final exams so they do not conflict
• Arranging components on a computer chip
• Analyzing strands of DNA
• Binary Search Trees
They all fall within the field of **GRAPH THEORY**

Non-conflicting exams

PageRank Algorithm
Undirected Simple Graphs

An undirected simple graph G is a set V, of vertices, and a set E, of unordered distinct pairs from V, called edges. We write $G=(V,E)$.
Graph Terminology

• If \((v_k, v_p)\) is an edge, we say that \(v_k\) and \(v_p\) are **neighbours**, and are **adjacent**. Note that \(k\) and \(p\) must be different.

• The number of neighbours of a vertex is also called its **degree**

• A sequence of nodes \(v_1, v_2, \ldots, v_k\) is a **path** of length \(k-1\) if \((v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k)\) are all edges

 – If \(v_1 = v_k\), this is called a **cycle**

• A graph \(G\) is **connected** if there exists a path through all vertices in \(G\)
Interesting Results on Graphs

Let $n = \text{number of vertices}$, and $m = \text{number of edges}$:

1. $m \leq n(n - 1)/2$
2. The number of graphs on n vertices is $2^{n(n-1)/2}$
3. The sum of the degrees over all vertices is $2m$.
How can we store information about graphs in Python?

• We need to store labels for the vertices
 – These could be strings or integers

• We need to store both endpoints using the labels on the vertices.

• We will consider three different implementations for undirected, unweighted graphs
Implementation 1: Vertex and Edge Lists

- $V = [v_1, v_2, v_3, \ldots, v_m]$, where
- $E = [e_1, e_2, e_3, \ldots, e_m]$, where edge $e_j = [a, b]$ when vertices a and b are connected by an edge

$V = [6, 4, 5, 3, 2, 1]$
$E = [[6, 4], [4, 5], [4, 3], [3, 2], [5, 2], [1, 2], [5, 1]]$
Implementation 2: Adjacency list

• For each vertex:
 – Store the labels on its neighbours in a list

• We will use a dictionary
 – Keys: labels of vertices
 • Recall: integers or strings can be keys
 – Associated values: List of neighbours (adjacent vertices)
Example:

\{1 : [2,5], \\
 2 : [1,3,5], \\
 3 : [2,4], \\
 4 : [3,5,6], \\
 5 : [1,2,4], \\
 6 : [4] \}
Implementation 3: Adjacency Matrix

• For simplicity, assume vertices are labelled 0, ..., $n - 1$
• Create an $n \times n$ matrix for G
• If there is an edge connecting i and j:
 – Set $G[i][j] = 1$,
 – Set $G[j][i] = 1$
• Otherwise, set these values to 0
Example:

$$G:$$

<table>
<thead>
<tr>
<th>vertex</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0, 1, 0, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[1, 0, 1, 0, 1, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[0, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0, 0, 1, 0, 1, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[1, 1, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[0, 0, 0, 1, 0, 0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing the implementations on simple tasks

- Determine if two vertices are neighbours.
- Find all the neighbours of a vertex.

Which implementation to use?
- We'll use the adjacency list (a good case could also be made for the adjacency matrix).
Graph Traversals

- Determine all vertices of G that can be reached from a starting vertex
- There can be different types of traversals
- If you find all vertices starting from v, the graph is *connected*
- If not all vertices can be reached, a *connected component* containing v has been found
- Must determine a way to ensure we do not cycle indefinitely
Applications of traversals

• Finding path between two vertices
• Finding connected components
• Tracing garbage collection in programs (managing memory)
• Shortest path between two points
• Planarity testing
• Solving puzzles like mazes
• Graph colouring
One approach:
Breadth-first search Traversal (bfs)

• Choose a starting point v
• Visit all the neighbours of v
• Then, visit all of the neighbours of the neighbours of v, etc.
• Repeat until all reachable vertices are visited
• Need some way to avoid visiting edges more than once
• Note: there may be more than one bfs ordering of a graph, starting from v.
Sample bfs orders

- A, C, E, B, I, F, G, D, H
- A, E, C, I, B, H, D, G, F
- B, E, F, G, D, I, A, H, C
- B, D, E, F, G, I, A, C, H
- H, I, C, B, D, A, E, F, G

plus more ...
Implementing bfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – all includes all "visited" vertices
 • Vertices are appended to the end
 – Q includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the front of Q
Implementation of bfs traversal

def bfs(graph, v):
 all = []
 Q = []
 Q.append(v)
 while Q != []:
 v = Q.pop(0)
 all.append(v)
 for n in graph[v]:
 if n not in Q and n not in all:
 Q.append(n)
 return all
Starting bfs from 0 (1)

- Start from v=0
- all = []
- Q = [0]
 - v = 0
 - all = [0]
 - Neighbours of 0: 1,4
 - Q = [1,4]
Continuing bfs (2)

- \(Q = [1, 4] \)
- \(v = 1 \)
- \(\text{all} = [0,1] \)
- Neighbours of 1: 0,2,3
 - \(Q = [4,2,3] \)
• Q: [4, 2, 3]
• v = 4
• all = [0,1,4]
• Neighbours of 4: 0,3
 – No vertices added to Q
• Q= [2,3]
• v = 2
• all = [0,1,4,2]
• Neighbours of 2: 1,6 \(\rightarrow\) Q = [3,6]
Continuing bfs (4)

- Q: [3, 6]
- v = 3
- all = [0,1,4,2,3]
- Neighbours of 3: 1,4,5
 - Q = [6,5]
- Q = [6, 5]
- v = 6
- all = [0,1,4,2,3,6]
- Neighbours of 6: 2,7,8
 - Q = [5,7,8]
Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0,1,4,2,3,6,5]
- Neighbours of 5: 3,8 (Q unchanged)
- Q = [7,8]
- v = 7
- all = [0,1,4,2,3,6,5,7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- v = 8
- all = [0,1,4,2,3,6,5,7,8]
- Neighbours of 8: 5,6 (Q unchanged)
- Q is empty
Another approach: depth-first traversal (dfs)

• Choose a starting point v
• Proceed along a path from v as far as possible
• Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called backtracking)
 — Repeat while unvisited, reachable vertices remain
• Note: there may be more than one dfs ordering of a graph, starting from v.
Sample dfs orders

- A, C, I, H, B, F, D, G, E
- A, E, B, G, D, I, H, C, F
- B, F, G, D, I, C, A, E, H
- H, I, B, F, G, D, E, A, C

plus more ...
Implementing dfs

• We will look at one implementation.
• Assumes an adjacency list representation.
• We use several lists:
 – **all** includes all "visited" vertices
 • Vertices are appended to the end
 – **S** includes vertices waiting to be "visited" (it will grow and shrink as the algorithm progresses)
 • Vertices are appended to the end and removed from the end of **S** as well
A depth first search traversal solution

def dfs(graph, v):
 all = []
 S = [v]
 while S != []:
 v = S.pop()
 if v not in all:
 all.append(v)
 for w in graph[v]:
 if w not in all:
 S.append(w)

 return visited
Breadth first vs depth first Searches

• Both need an additional list to store needed information:
 – BFS uses Q:
 • Add to the end and remove from the front
 • Called a Queue
 – DFS uses S:
 • Add to the end and remove from the end
 • Called a Stack
 – Stacks and Queues are both very useful in CS
Extension: Weighted edges

• Each edge has an associated weight. It might represent:
 – Distance between cities
 – Cost to move between locations
 – Capacity of a route
 – Probability of moving from one web page to another
Adjust adjacency list to include weights

- Adjust our adjacency list to store weights with each edge

\{1: [[2,2], [4,5]],
 2: [[1,2], [3,14],
 [4,5], [5,4]],
 3: [[2,14], [5,34]],
 4: [[1,5], [2,5], [5,58]],
 5: [[2,4], [3,34], [4,58]] \}
Other types of graphs

- Edges can be directed – from one vertex to another
- Directed edges can have weights as well
- *Exercise*: Think about how directions change our representations
Goals of Module 11

• Understand basic graph terminology
• Understand representation of graphs in Python
• Understand breadth-first and depth-first search traversals