CS 116 TUTORIAL 2

MAKING DECISIONS IN PYTHON
REMINDERS

• Assignment 2 is due on Wednesday Sep 27th at 10AM
BOOLEANS (REVIEW FROM LAST WEEK)

• **Values:** True, False (Capitalization!)

• **Boolean Operations:**
 - and, or, not

• **Relational Operators:**
 - <, >, <=, >=, ==, !=

• **Example:** 5 < 6
CONDITIONALS

• Conditions:
 – *if*: to start a condition
 – *elif*: to continue a condition (optional)
 – *else*: to execute something if all other conditions are not true (optional)
TIPS

• Always make sure that you have return statements inside your conditions, as desired.

• Double-check that your conditions are in the correct order
1. Ensure you understand the results of calling `choices(8), choices(10), choices(100), choices(111), choices(250), choices(360)`:

```python
def choices(n):
    answer = 0
    if n % 2 == 0:
        answer = answer + 1
    if n % 3 == 0:
        answer = answer + 1
    elif n % 5 == 0:
        answer = answer + 1
    else:
        answer = 10 * answer
    if n % 10 == 0:
        answer = answer - 1
    if n % 4 == 0:
        answer = answer // 2
    else:
        answer = 2 * answer
    return answer
```
2. If you are given three sticks, you may or may not be able to arrange them in a triangle.

If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can. If the sum of two lengths equals the third, they form what is called a "degenerate triangle."

Write a function `is_triangle` that consumes three positive integers (`s1, s2, and s3`) representing the lengths of three sticks and returns one of the following:

"No triangle exists" if no triangle can be built with the three sticks

"Degenerate triangle exists" if a degenerate triangle exists for sticks of these lengths

"Triangle exists" if a triangle can be made from the sticks
3. Fermat’s Last Theorem states that given positive integers a, b, and n, there exists no integer c for which $a^n + b^n = c^n$ unless $n \leq 2$.

Although Fermat wrote the statement of this theorem in the margin of a book in 1637, it was not proven until 1995 (and not for lack of trying – thousands of incorrect proofs of the theorem were put forward before it was finally proven).
Write a function `fermat_check` that consumes four positive integers, a, b, c, and n; n >= 2.

If n = 2, and $a^2 + b^2 = c^2$, then your function should return “Pythagorean triple”.
If n = 2, and $a^2 + b^2$ is not c^2, then your function should return “Not a Pythagorean triple”.
If n > 2, and $a^n + b^n = c^n$, then your function should return “Fermat was wrong!”, as you have found a counterexample to Fermat’s Last Theorem. Otherwise, your function should return “Not a counterexample”.
4. A perfect number is a positive integer that is equal to the sum of its proper positive divisors (i.e. the sum of its positive divisors excluding the number itself).

Write a function `is_perfect_num` that consumes a positive integer `n`. The function returns `True` if `n` is a perfect number, `False` otherwise. For example, `is_perfect_num(6) => True` (because $1+2+3 = 6$, and $1, 2, \text{and } 3$ are all the proper divisors of 6).