
W20 CS 116
Midterm Q&A Session

Midterm
Information

The CS116 Midterm
v Monday March 2nd, 2020, 7:00–8:50 p.m.

v Look up your writing location on Odyssey

v Covers Module 1-5 and Assignment 1-5 (No loops)

Recursion

Recursion

Structural Recursion
Ø Recursion on the structure of the data
Ø Moves regularly towards a base case

Accumulative Recursion
Ø Recursion using an accumulator argument
Ø Can be structural OR generative

Generative Recursion
Ø Recursion which is not structural
Ø Breaks the problem into subproblems

inspired by the context of the question
Ø Free form recursion!

Accumulative Example

Use accumulative recursion to complete the function classify_chars, that
consumes a string s, and produces a list containing exactly three natural
numbers:
• the number of alphabetic characters in s
• the number of digits in s
• the number of all other characters in s

For example,
• classify_chars("Hello CS116") => [7, 3, 1]
• classify_chars("2*math.pi*r") => [7, 1, 3]

Generative Example

Generative recursion question

Hint: You must store the values of fk and fk+1 in variables before attempting to compute either f2k or
f2k+1. Recomputing these values will cause your code to time out.

Solution

Mutation

Tracing
L = [1,2,3]

L.append('a') # What is value of L?

M = L # M & L are aliases. Why?

M.extend([True, False]) # What is the value of L? M?

L.insert(3,'new') # What is the value of L? M?

L = [] # What is the value of L? M? Are they aliases?

M.append(1) # What is the value of M?

M.remove(1) # What is the value of M?

x = M.pop(1)

L = [1,2,3]

1 2 3

L

L = [1,2,3]
L.append('a')

1 2 3

L

'a'

L = [1,2,3]
L.append('a')
M = L

1 2 3

L

'a'

M

L = [1,2,3]
L.append('a')
M = L
M.extend([True, False])

1 2 3

L

'a'

M

True False

L.insert(3,'new')

1 2 3

L

'a'

M

True False'new'

L.insert(3,'new')
L = []

1 2 3

L

'a'

M

True False'new'

[]

L.insert(3,'new')
L = []
M.append(1)

L

M

[]

1 2 3 'a' True False'new' 1

L.insert(3,'new')
L = []
M.append(1)
M.remove(1)

L

[]

M

2 3 'a' True False'new' 1

L.insert(3,'new')
L = []
M.append(1)
M.remove(1)
X = M.pop(0) L

[]

M
2

3 'a' True False'new' 1
X

sorted_insert()
For many applications, it is worth the effort to keep a list in sorted order. Write
a function sorted_insert that takes in an alphabetically-ordered list of
strings, los, and a (possibly disordered) list of string new_los, and mutates
los by inserting each element of new_los into its appropriate place in los.

For example:

L = [“stuff”, “words”]
sorted_insert(L, []) => None
and L becomes [“stuff”, “words”]

sorted_insert() - Examples
Ex1
L = [“hello”, “world”]
sorted_insert(L, [“computer”, “artificial”]) => None
and L becomes [“artificial”, “computer”, “hello”, “world”]
Ex2
L = [“Angus”, “Hoots”, “Zargothrax”]
sorted_insert(L, [“Ralathor”, “Christopher”]) => None
and L becomes [“Angus”, “Christopher”, “Hoots”, “Ralathor”,
“Zargothrax”]
Ex3
M = []
sorted_insert(M, [“stringy”]) => None
and M becomes [“stringy”]

Solution

Design Recipe

Purpose
v Brief description of what the function does.

v Important!
Include the parameter names to show the relationship

between input and the function’s actions

Contract and Requirements
v Refer to next slide (see style guide too!) for types allowed
v Use single arrows
v No Num type in CS 116!

Ø If your function consumes integers and decimal numbers, use (anyof Int Float)

v Be as specific as possible.

Ø If your function consumes a non-negative integer n:
Int v.s. Nat

Effects
v Used whenever the function changes the Python environment, i.e, does something

else other than returning a value.
v Effects section is included after the purpose and before the contract.
v Include effects for helper functions too!

v Types of Effects:

1) Reading in user input from keyboard
2) Printing to the screen
3) Mutating a list

Examples
v Include at least 2 examples
v Include both some typical cases and edge cases:

v Edge case examples:
Ø Empty list if your function can consume it.
Ø 0 if this is the smallest number your function can consume.
Ø Empty string if your function can consume it.
Ø True and False cases if your function returns Boolean values

Example 1

Write a function, fn_1 that consumes a list of integers, L and mutates L such that all the even
elements in L are divided by 2, and the odd elements in L are doubled.

’’’ Mutates a list of integers, L such that even numbers are
halved and odd numbers are doubled.

Effect: Mutates L

fn_1: (listof Int) -> None

Examples:

L=[] ; fn_1(L) => None ; L is mutated to []

M=[0]; fn_1(L) => None; M is mutated to [0]

N = [-2,5] ; fn_1 (N) => None; N is mutated to [-1,10] ’’’

Example 2

Write a function, fn_2, that consumes a list of integers, L and a natural number, n and returns a
list which contains all the elements of L multiplied by n.

’’’ Returns a list which consists of all the elements of L, a
list of integers, multiplied by n, a natural number.

fn_2: (listof Int) Nat -> (listof Int)

Examples:

fn_2([],3) => []

fn_2([0],4) => [0]

fn_2([-2,4],3) => [-6,12] ’’’

Testing Code

Functions
test for returning result except Float

check.expect(“label1”, fn_name1(x1, x2, …),expected_result)

test for returning result of Float

check.within(“label2”, fn_name2(x1, x2, …),expected_result,tolerane)

when the function asks for user input

check.set_input(“input 1”, “input 2”, …)

when the function prints. Use one of:

check.set_print_exact(“Printed at line1.\nPrinted at line2.\n…”)

check.set_screen(“description of the printing result”)

Testing for Mutation

L = […, …, …, ……]
check.expect(“test label-return”, fn_name(L), output)
check.expect(“test label-mutation”, L, [mutation result])

Example: test for sorted_insert
L = [“words”, “stuff”]
sorted_insert(L, []) => None
and L becomes [“words”, “stuff”]

Test 1
L = [“stuff”, “words”]
check.expect(“test 1 - return”, sorted_insert(L,[]), None)
check.expect(“test 1 - mutation”, L, [“stuff”, “words”])

Testing for input() and print()

check.set_input(“input 1”, “input 2”, …)

check.set_print_exact(“Printed at line1.\nPrinted at line2.\n…”)

check.expect(”test label”, fn_name(), expected_result)

Example: test for mastermind
mastermind

check.set_input(“1 2 3 4”, “6 2 3 5”, “1 6 1 4”)

check.set_print_exact(“There are 2 numbers in correct places
and 0 numbers in incorrect places .\nThere are 0 numbers in
correct places and 1 numbers in incorrect places .\nSequence
found in 3 guesses .”)

check.expect(“mastermind_1”, mastermind([1, 6, 1, 4], 5), 3)

String and list
methods

