
T U T O R I A L 7
E F F I C I E N C Y

REMINDER

• Assignment 6 is due next Wednesday, 10 AM.

• Final is on April 15th, at 4:00 pm.

CLICKER QUESTION 1

How was the midterm?

A. Pretty smooth and there was enough time

B. Overall easy but long

C. A bit difficult in some questions but overall reasonable length and

difficulty

D. Overall difficult.

E. 

RUNTIME REVIEW

• Look at the “worst case” scenario (i.e. longest runtime)

• Assume function works (i.e. will not return an error when you run it)

• Based on the assumptions learned in class (and in the modules)

RUNTIME REVIEW
• O(1) – Constant

– does not depend on the size of the input

– Comparison operations: >, >=, <, <=, ==

– Value assignment: (i.e. x = 4)

– For numbers:

• Numeric operations: +, *, /, -, %, //

• max, min

– For list L:

• L[0],L[1], L[2],…, len(L)…

• L.append(4)…

• O(n) – Linear

– depends on the size of the input

– For list L(assume the length of L is n):

• L[1:], max(L), L + L, sum(L),L.remove(0)…

• list(map(lambda x: x+1, L))

RUNTIME REVIEW

• O(n2) – Quadratic

– time proportional to square of size of the input

– Be careful of abstract functions:

• list(map(lambda k: list(range(k)), list(range(n)))))

• O(2n) – Exponential

– As size of input increases by 1, the run time doubles

– example: Module 5, Slide 15: fib

USEFUL SUMMATIONS

• σ𝑖=1
𝑛 1 = 𝑂 𝑛

• σ𝑖=1
𝑛 𝑖 = 𝑂 𝑛2

• σ𝑖=1
𝑛 𝑛 = 𝑂 𝑛2

• σ𝑖=1
𝑛 σ𝑗=1

𝑛 1 = 𝑂 𝑛2

RUNTIME EXAMPLE 1

Let n = len(L)

def fn(L):

ans = []

for x in L:

if x[0]=='A':

ans.append(x)

return ans

Count steps for:

• Assign [] to ans

• Loop:

– Number of Iterations

– Asymptotic run time of the

body of loop:

• Check if x[0] == 'A'

• ans.append(x)

• Return ans

• σ𝑖=1
𝑛 1 = O(n)

Let n be a natural number

def fn(n):

ans = 1

collection = list(range(2*n))

for x in collection:

if x%10==1:

ans = ans + 1

else:

ans = ans + 2

return ans

RUNTIME EXAMPLE 2

Count steps for:

• Assign 1 to ans

• list(range(2*n))

• Assign value to collection

• Loop:

- Number of Iterations

- Asymptotic run time of the

body of loop:
- Calculate x%10

- Check if x%10 ==1

- ans = ans + 1

(or ans = ans + 2)

• Return ans

• O(n) + σ𝑖=1
𝑛 1 =>

O(n) +O(n)=>O(n)

RUNTIME EXAMPLE 3

def fn(n):

if n % 2 == 0:

return "outcome1"

elif n % 3 == 0:

return "outcome2"

elif n % 5 == 0:

return "outcome3"

else:

return "outcome4"

Count steps for:

• Calculate n%2

• Compare it with 0

• Calculate n%3

• Compare it with 0

• Calculate n%5

• Compare it with 0

• Return the answer

• O(1)

def fn(L):

return len(list(filter(lambda x:

x == max(L),L)))

RUNTIME EXAMPLE 4

Count the steps for:
• max()

• Check x == max(L)

• Filter
• len()

• O(n) * O(n) => O(n^2)

CLICKER QUESTION 1A

a) Determine the worst-case run-time in terms of n, where n = len(loi)

def evens(loi):

return list(filter(lambda x: x%2 == 0, loi))

A. O(1)
B. O(n)
C. O(n^2)
D. O(2^n)

CLICKER QUESTION 1B

b) Determine the worst-case run-time in terms of n

def create_number_lists(n):

total = []

while n != 0:

i = 0

sublist = []

while i < n:

sublist.append(i)

i = i + 1

total.append(sublist)

n = n - 1

return total

A. O(1)
B. O(n)
C. O(n^2)
D. O(2^n)

ITEM DEFINITION

A Card is a list of length 2 where

- the first item is an integer between 1 and 13, inclusive, representing

the value of the card, and

- the second item is a string ("hearts", "spades", "clubs", or

"diamonds") representing the suit of the card.

Example: [1, "hearts"] represents the ace of hearts

LOOP: TUTORIAL 4 Q1

Use loops, write a function create_cards that consumes

two lists with same length, which are a list of card values

(integers between 1 and 13), and a list of suit values (one of the
four suit strings), and returns a list of Card, created pair-wise

from the consumed lists (values and suits).

For example,
create_cards([4,1,10],["hearts", "diamonds", "clubs"])

=>[[4,"hearts"], [1, "diamonds"], [10, "clubs”]]

def create_cards(values, suits):

acc = []

for i in range(len(values)):

acc.append([values[i],suits[i]])

return acc

A. O(n)

B. O(n^2)

C. O(2^n)

WHAT IS THE RUNTIME OF
CREATE_CARDS?

WHAT IS THE RUNTIME IF WE
USE ABSTRACT LIST FUNCTION?

def create_cards(values,suits):

return list(map(lambda x, y:[x,y],values,suits))

LOOP: TUTORIAL 5 Q2

Using loops, write a function count_max that consumes a nonempty

list of integers alon and returns the number of times the largest

integer in alon appears.

Note: - max and L.count()cannot be used in this question.

- Your function can only pass through the list once

For example,

count_max([1, 3, 5, 4, 2, 3, 3, 3, 5]) => 2

since the largest element of the list, 5, appears twice. Your function

should pass through the list only once.

WHILE LOOP SOLUTION

def count_max(alon):

current_max = alon[0]

max_occur = 0

while L != []:

if L[0] > current_max:

current_max = alon[0]

max_occur = 1

elif L[0] == current_max:

max_occur += 1

L = L[1:]

return max_occur

What is the runtime?

Let us solve the question with

runtime O(n)!

FOR LOOP SOLUTION

def count_max(lon):

current_max = lon[0]

max_occur = 0

for each in lon:

if each > current_max:

current_max = each

max_occur = 1

elif each == current_max:

max_occur += 1

return max_occur

