CS 116 TUTORIAL 2
MAKING DECISIONS IN PYTHON
REMINDERS

• Assignment 2 is due on Wednesday Sept. 25th at 10:00 AM

• Midterm Exam: Monday Nov. 4th, at 7:00 PM

• Come to office hours if you need help.
BOOLEANS (REVIEW FROM LAST WEEK)

- **Values:** True, False (Capitalization!)

- **Boolean Operations:**
 - and, or, not

- **Relational Operators:**
 - <, >, <=, >=, ==, !=

- **Example:** 5 < 6
CONDITIONALS

• Conditions:
 – `if` : to start a set of conditions
 – `elif` : to continue a set of conditions (optional)
 – `else` : to execute something if all other conditions in the set are not true (optional)
TIPS

• Make sure that you have return statements inside your conditions when needed.

• Double-check that your conditions are in the correct order
QUESTION 1

Ensure you understand the results of calling:

- choices(8)
- choices(10)
- choices(100)
- choices(111)
- choices(250)
- choices(360)

```python
def choices(n):
    answer = 0
    if n % 2 == 0:
        answer = answer + 1
    if n % 3 == 0:
        answer = answer + 1
    elif n % 5 == 0:
        answer = answer + 1
    else:
        answer = 10 * answer
    if n % 10 == 0:
        answer = answer - 1
    if n % 4 == 0:
        answer = answer // 2
    else:
        answer = 2 * answer
    return answer
```
If you are given three sticks, you may or may not be able to arrange them in a triangle.

If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can. If the sum of two lengths equals the third, they form what is called a "degenerate triangle."

Write a function `is_triangle` that consumes three positive integers \((s1, s2, \text{ and } s3)\) representing the lengths of three sticks and returns one of the following:

"No triangle exists" if no triangle can be built with the three sticks.

"Degenerate triangle exists" if a degenerate triangle exists for sticks of these lengths.

"Triangle exists" if a triangle can be made from the sticks.
Fermat’s Last Theorem states that given positive integers a, b, and n, there exists no integer c for which $a^n + b^n = c^n$ unless $n \leq 2$.

Although Fermat wrote the statement of this theorem in the margin of a book in 1637, it was not proven until 1995 (and not for lack of trying – thousands of incorrect proofs of the theorem were put forward before it was finally proven).
Write a function `fermat_check` that consumes four positive integers, a, b, c, and n; n \(\geq 2 \).

- If \(n = 2 \), and \(a^2 + b^2 = c^2 \), then your function should return “Pythagorean triple”.

- If \(n = 2 \), and \(a^2 + b^2 \) is not \(c^2 \), then your function should return “Not a Pythagorean triple”.

- If \(n > 2 \), and \(a^n + b^n = c^n \), then your function should return “Fermat was wrong!”, as you have found a counterexample to Fermat’s Last Theorem.

- Otherwise, your function should return “Not a counterexample”.
Write a function `three_of_a_kind` which consumes 4 integers, \(d_1, d_2, d_3, d_4 \). The function returns `True` if exactly three of the consumed values are equal to each other, and `False` otherwise.

For example,

- `three_of_a_kind(10, 10, 10, 10) => False`
- `three_of_a_kind(2, 3, 2, 2) => True`
- `three_of_a_kind(2, 3, -1, 2) => False`