REMINDERS

• Assignment 2 is due on Wednesday May 29th at 10:00 AM

• Midterm Exam? Monday June 24th, at 7:00 PM

• Come to office hours if you need help.
BOOLEANS (REVIEW FROM LAST WEEK)

• Values: True, False (Capitalization!)

• Boolean Operations:
 and, or, not

• Relational Operators:
 <, >, <=, >=, ==, !=

• Example: 5 < 6
• Conditions:
 – if : to start a set of conditions
 – elif : to continue a set of conditions (optional)
 – else : to execute something if all other conditions in the set are not true (optional)
TIPS

• Make sure that you have return statements inside your conditions when needed.

• Double-check that your conditions are in the correct order
QUESTION 1

Ensure you understand the results of calling:

- choices(8)
- choices(10)
- choices(100)
- choices(111)
- choices(250)
- choices(360)

```python
def choices(n):
    answer = 0
    if n % 2 == 0:
        answer = answer + 1
    if n % 3 == 0:
        answer = answer + 1
    elif n % 5 == 0:
        answer = answer + 1
    else:
        answer = 10 * answer
    if n % 10 == 0:
        answer = answer - 1
    if n % 4 == 0:
        answer = answer // 2
    else:
        answer = 2 * answer

    return answer
```
If you are given three sticks, you may or may not be able to arrange them in a triangle.

If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can. If the sum of two lengths equals the third, they form what is called a "degenerate triangle."

Write a function `is_triangle` that consumes three positive integers \((s1, s2, \text{and } s3)\) representing the lengths of three sticks and returns one of the following:

"No triangle exists" if no triangle can be built with the three sticks.

"Degenerate triangle exists" if a degenerate triangle exists for sticks of these lengths.

"Triangle exists" if a triangle can be made from the sticks.
QUESTION 3

Fermat’s Last Theorem states that given positive integers a, b, and n, there exists no integer c for which $a^n + b^n = c^n$ unless $n \leq 2$.

Although Fermat wrote the statement of this theorem in the margin of a book in 1637, it was not proven until 1995 (and not for lack of trying – thousands of incorrect proofs of the theorem were put forward before it was finally proven).
Write a function `fermat_check` that consumes four positive integers, a, b, c, and n; n >= 2.

- If n = 2, and \(a^2 + b^2 = c^2\), then your function should return “Pythagorean triple”.

- If n = 2, and \(a^2 + b^2\) is not \(c^2\), then your function should return “Not a Pythagorean triple”.

- If n > 2, and \(a^n + b^n = c^n\), then your function should return “Fermat was wrong!”, as you have found a counterexample to Fermat’s Last Theorem.

- Otherwise, your function should return “Not a counterexample”.
Write a function `three_of_a_kind` which consumes 4 integers, `d1`, `d2`, `d3`, `d4`. The function returns `True` if exactly three of the consumed values are equal to each other, and `False` otherwise.

For example,

- `three_of_a_kind(10,10,10,10)` => `False`
- `three_of_a_kind(2,3,2,2)` => `True`
- `three_of_a_kind(2,3,-1,2)` => `False`