

REMINDERS

- Assignment 2 is due on Wednesday Jan $29^{\text {th }}$ at IOAM
- Midterm is on March $2^{\text {nd }}$, at 7 PM
- Come to office hours if you need help :

BOOLEANS IREVIEW FROM LAST WEEK]

- Values: True, False (Capitalization!)
- Boolean Operations:
and, or, not
- Relational Operators:
$<,>,<=,>=, \quad==,!=$
- Example: $5<6$

CONDITIONALS

- Conditions:
- if: to start a condition
-elif: to continue a set conditions (optional)
- else : to execute something if all other conditions in the set are not true (optional)

CQ1

- What is returned if you run $f(3)$?
A. 3
$\operatorname{def} f(x):$
B. 6
C. 9
D. None
E. Error

$$
\begin{aligned}
& \text { if } x>0 \text { and }(x \div 2)==0: \\
& \text { return } x * 2
\end{aligned}
$$

$$
\operatorname{elif}(x / / 2)==1
$$

$$
\text { and }(x \div 2)==0:
$$

$$
\text { return } x * * 2
$$

- Always make sure that you have return statements inside your conditions, as desired.
- Double-check that your conditions are in the correct order

QUESTION 1

Ensure you understand the results of calling:

- choices(8)
- choices(10)
- choices(100)
- choices(111)
- choices(250)
- choices(360)

$$
\begin{aligned}
& \text { def choices }(\mathrm{n}): \\
& \text { answer }=0 \\
& \text { if } n \div 2==0:
\end{aligned}
$$

$$
\text { answer }=\text { answer }+1
$$

$$
\text { if } n \circ 3==0 \text { : }
$$

$$
\text { answer }=\text { answer }+1
$$

$$
\text { elif } n \div 5==0:
$$

$$
\text { answer }=\text { answer }+1
$$

else:

$$
\text { answer }=10 \quad * \text { answer }
$$

$$
\text { if } n \% 10==0:
$$

$$
\text { answer }=\text { answer }-1
$$

$$
\text { if } n \div 4==0 \text { : }
$$

$$
\text { answer = answer // } 2
$$

else:

$$
\text { answer }=2 * \text { answer }
$$

return answer

QUESTION 2

If you are given three sticks, you may or may not be able to arrange them in a triangle.
If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can. If the sum of two lengths equals the third, they form what is called a "degenerate triangle."

Write a function is_triangle that consumes three positive integers ($s 1, s 2$, and $s 3$) representing the lengths of three sticks and returns one of the following:
"No triangle exists" if no triangle can be built with the three sticks
"Degenerate triangle exists" if a degenerate triangle exists for sticks of these lengths
"Triangle exists" if a triangle can be made from the sticks

QUESTION 3

Fermat's Last Theorem states that given positive integers a, b, and n, there exists no integer c for which $a^{n}+b^{n}=c^{n}$ unless $\mathrm{n}<=2$.

Although Fermat wrote the statement of this theorem in the margin of a book in 1637, it was not proven until 1995 (and not for lack of trying thousands of incorrect proofs of the theorem were put forward before it was finally proven).

Write a function fermat_check that consumes four positive integers, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and $\mathrm{n} ; \mathrm{n}>=2$.

- If $\mathrm{n}=2$, and $a^{2}+b^{2}=c^{2}$, then your function should return "Pythagorean triple".
- If $\mathrm{n}=2$, and $a^{2}+b^{2}$ is not c^{2}, then your function should return "Not a Pythagorean triple".
- If $\mathrm{n}>2$, and $a^{n}+b^{n}=c^{n}$, then your function should return "Fermat was wrong!", as you have found a counterexample to Fermat's Last Theorem.
- Otherwise, your function should return "Not a counterexample".

QUESTION 4

A perfect number is a positive integer that is equal to the sum of its proper positive divisors (i.e. the sum of its positive divisors excluding the number itself).

Write a function is_perfect_num consumes a positive integer n. The function returns True if n is a perfect number, False otherwise.

For example, is_perfect_num (6) => True (because $1+2+3=6$, and $I, 2$, and 3 are all the proper divisors of 6).

