
CS 116 TUTORIAL
4

L I S T S , M U TAT I O N

[],,,

REMINDER
• Assignment 04 due next Wednesday, February 12th (at

10:00AM)

• Midterm is on March 2nd at 7 PM

• Final is on April 15th at 4 PM

• Q&A session on February 29 at 2 PM.
– Share any questions you want to be reviewed with the

ISA’s on the Piazza post set up for this.

COMMON LIST FUNCTIONS
• len(L) => returns length of L
• L[i] => returns element at index i
• L[i:j] => returns L from i to j-1
• x in L => returns True if x is in L and

False otherwise.
• L.append(x)
• L.remove(x)
• L.pop(x)
• L.insert(i,x)
• See Module 04 Slide 8 for other list functions and use

Python's help function

Examples of functions
that mutate lists.

CQ 1:
A Info is a list of 4 items in the
order below:

1. Name (Str)

2. User Id (Str)

3. Faculty (Str)

4. Year (Nat)

Example:

June_info = ['June K',
'k34june',

'Science', 3]

How do we find June’s faculty
from June_info?

constants:

faculty = 'Science'

A. June_info[2]

B. June_info[2:3]

C. June_info[2:3][0]

D. A and B

E. A and C

ABSTRACT LIST FUNCTIONS:
MAP,FILTER
Map applies function to each element in list

vTypical ONE parameter case:

list(map(fun_name, L))

* A good-to-know (not required in CS116):

2-parameter example:

list(map(fun_name2,L1,L2))

- fun_name2 takes 2 parameters in this case.

Used to turn
it into a list

Note: fun_name typically have
only one parameter/argument.

Ex. def fun_name(x):
return x+2

ABSTRACT LIST FUNCTIONS:
FILTER
• filter

– matches the elements in list for which function fun_name
returns True.

list(filter(fun_name, L))

Note: map and filter both return an iterator, and we need to
convert that to a list

map and filter can also be applied to strings.

Used to turn
it into a list

Ex. def fun_name(y):
return y==2

LAMBDA
lambda x1,x2,…,xn: body here

Example:

def non_zero(numlist):

return list(filter(lambda x: x != 0, numlist))

def triple(numlist):

return list(map(lambda x: x * 3, numlist))

Parameters of lambda (no brackets)

LAMBDA
We can also use map and filter to strings with lambda as well

For example:

sentence is a string consisting of various characters

def just_letter(sentence):

loc = list(filter(lambda c: c.isalpha(),

sentence))

return "".join(loc)

ITEM DEFINITION
A Card is a list of length 2 where

- the first item is an integer between 1 and 13, inclusive, representing
the value of the card, and

- the second item is a string ("hearts", "spades", "clubs", or
"diamonds") representing the suit of the card.

Example: [1, "hearts"] represents the ace of hearts

QUESTION 1
Write a function create_cards that consumes two lists with same
length, which are a list of card values (integers between 1 and 13), and a
list of suit values (one of the four suit strings), and returns a list of
Card, created pair-wise from the consumed lists (values and
suits).

• For example,
create_cards([4,1,10],["hearts", "diamonds", "clubs"])

=>[[4,"hearts"], [1, "diamonds"], [10, "clubs”]]

QUESTION 2
Write a function choose_by_colour that consumes a list of Card
(hand) and a string "red" or "black" (colour) and returns a list of
the values of the Card in hand of the appropriate colour (spades and
clubs are "black", hearts and diamonds are "red").

For example,
choose_by_colour([[1,'hearts'],

[9,'spades'],

[3,'diamonds']], 'red')

Þ [1,3]

Write this function twice. First, use recursion. Then, use abstract list
functions.

QUESTION 3
a) Write a function flip_colour that consumes

a Card, c, and mutates the suit of that Card to
a different colour: if c is a heart, it is mutated to a
spade (and vice versa), while if c is a club, it is
mutated to a diamond (and vice versa).

b) Write a function flip_hand that consumes a list
of Card (hand), and mutates the suit of each
Card in the list so that their colours are flipped in
the same way as in flip_colour.

QUESTION 4
Write a function modify_list that consumes a list of integers (called
nums) and a single integer (n). The function returns None, but mutates
the list in the following way:

§ If n does not appear in nums then add it to the end of nums.

§ If n appears once, then remove n from nums.

§ If n appears at least twice, remove the first and last occurrences of n.

§ For example:
L = [1, 2, 3]

modify_list(L, 10) => None

L = [1, 2, 3, 10]

QUESTION 5
Write a function sanitize that consumes a string, s, and returns a similar
string but with any non-alphanumeric characters removed. Write this
function using abstract list functions that operate on the consumed
string.

• For example: sanitize("@Test@") => "Test"

QUESTION 6
Write a function reversed_list() that consumes a list of string, L,
and returns a list containing the elements of L in reverse order. Write
this function using abstract list functions ONLY.

• For example: reversed_list[‘I’,’love’,’cs116’]) =>
([‘cs116’,’love’,’I’]

