

REMINDER

- Assignment 05 due Wednesday, Feb. 26 ${ }^{\text {th }}$ at $10: 00 \mathrm{AM}$
- Midterm is on March $2^{\text {nd }}$ at 7 PM
- Midterm reference sheet will be posted on Piazza \& course webpage.
- Q\&A session is on Feb. 29 th at 2 pm . Share the questions on Piazza!
- Final is on April $15^{\text {th }}$ at 4 pm

RECURSION

Types:

- Structural recursion

We've been using this so far.

- Accumulative recursion

- Generative recursion

STRUCTURAL U.S. ACCUMULATIVE

- Structural Recursion:
- Break problems into smaller problems using the recursive definition of our data.
- recursive subproblem is always one step closer to a base case
- Uses a recursive template
- Accumulative Recursion:
- Recursion with an accumulator(s)

But these two are not necessarily independent!

ACCUMULATIVE RECURSION

```
def acc_fn(remaining, acc):
    if (base_case of remaining):
```



```
return acc_fn(updated_remaining, updated_acc)
def fn(lst):
    return acc_fn(initial_remaining, initial_acc)
```

- Accumulators "keep track" of something so that you can quickly return the expected result
- Sometimes, you may need more than one accumulator.

Generative Recursion: A Summary!

- It's recursion...
- Solving larger problem by solving subproblem(s) inspired by the problem itself.
- There's no "structural" format:
- Recursing at 'different' places
- Recursing 'multiple' times
- Not always counting up/down by "one"
- Classic examples (shown in class):
- Palindromes
- Solving GCD's with Euclid's Algorithm

Example: Euclidean Algorithm on GCD

Let m and n be integers such that $\mathrm{m} \geq n$ and $m=q n+r$, where $0 \leq r<n$. Then the following is true:

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, r)
$$

Note:

- $r=m \bmod n$
- Check out the proof for Euclidean Algorithm on Wikipedia

Code

```
def gcd(m,n):
    if m == 0:
        return n
        elif n == 0:
        return m
        else:
        return gcd(n, m%n)
```


Analysis

Base Case \#I

Base Case \#2

Recursive call:

- $n \leq m$
- $0 \leq m \circ n<n$

CQ 1: CONFIDENCE LEVEL

How confident are you with generative recursion?
A. Not at all. (i.e.What the fork is going on?)
B. I'm sort of confident but I would like more examples.
C. I'm sort of confident but I don't want to see more examples.
D. I'm very confident with generative recursion.

CQ 2:

Does this solution use accumulative recursion?
A. Yes
B. No
C. I don't know.

```
def recursion3(lst):
    if lst == []:
        return True
    elif lst[0] == lst[-1]:
    return recursion3(lst[1:-1])
    else:
        return False
```


CQ 3:

Does this solution use accumulative recursion?
A. Yes
B. No
C. I don't know
def recursion4(lst,boo):

```
if lst == []:
return boo
else: L[0] == L[-1]:
boo = (boo and (L[0] == L[-1]))
```

return recursion4(lst[1:-1],boo)

QUESTION 1

- Write an accumulatively recursive function record_digit(n) that returns a list of integers of length 10 , with each index from 0 to 9 represents a corresponding digit's total appearances in the integer n. You cannot use L.count().
- For example:

$$
\begin{aligned}
\text { record_digit }(19990514)=> & {[1,2,0,0,1,1,0,0,0,3] } \\
& 01234556789
\end{aligned}
$$

QUESTION 2

Write an accumulatively recursive function count_max that consumes a nonempty list of integers alon and returns the number of times the largest integer in alon appears.
Note: - max and L. count () cannot be used in this question.

- Your function can only pass through the list once

For example,
count_max ([1, 3, 5, 4, 2, 3, 3, 3, 5]) => 2
since the largest element of the list, 5 , appears twice. Your function should pass through the list only once.

QUESTION 3: REDUCIMG NUMBERS

Write a function smaller that consumes a nonempty string s, containing only numeric characters, and generates a new string by repeatedly removing the larger of the first and last characters in s. If the first and the last number are the same, remove the last one.
For example, starting from " 5284 ", compare " 5 " and " 4 ", and recurse on " 284 ", which will compare " 2 " and " 4 ", and recurse on " 28 ". Comparing " 2 " and " 8 ", leads to recursing on " 2 ", which is the answer (since it is a string of length 1).
NOTE: Do not use min.

For example,

```
smaller("4325") => "2"
smaller("1") => "1"
smaller("2325") => "2"
smaller("8668") => "6"
```


QUESTION 4: SKIPPING VALUES

Given a list L of positive integers, the skip-value of a list is the number of steps to reach the end of the list, using the values in the list

- If L is empty, the skip value is 0
- If L is nonempty:
- Add I to the remaining skip value
- Move ahead L[0] places in the list, and repeat the process with the remainder of the list from that place
Write a function skip_value to calculate the skip value of the list L.
For example,

$$
\begin{aligned}
& \text { skip_value }([])=>0 \\
& \text { skip_value }([1,1,1])=>3 \\
& \text { skip_value }([2,100,1])=>2
\end{aligned}
$$

QUESTION 4: TRACING EXAMPLES

```
skip_value([1,1,1])
=> 1+skip_value([1,1])
=> 1+(1+skip_value([1]))
=> 1+(1+(1+skip_value([])))
=> 1+(1+(1+0))
=> 3
skip_value([2,100,3,1,1,1])
=> 1+skip_value([3,1,1,1])
=> 1+(1+skip_value([1]))
=> 1+(1+(1+skip_value([])))
=> 1+(1+(1+0))
=> 3
```


QUESTION 5

Develop an accumulatively recursive function list_to_num that consumes a nonempty list, digits, of integers between 0 and 9 , and returns the number corresponding to digits.

For example,

- list_to_num ([9, 0, 8]) => 908
- list_to_num ([8, 6]) => 86
- list_to_num ([0, 6, 0]) => 60

