
CS 116 TUTORIAL
5

A B S T R A C T L I S T F U N C T I O N A N D

A C C U M U L AT I V E R E C U R S I O N

REMINDER

• Assignment 05 due Wednesday, Feb. 26th at 10:00AM

• Midterm is on March 2nd at 7 PM

– Midterm reference sheet will be posted on Piazza & course

webpage.

– Q&A session is on Feb. 29th at 2pm. Share the questions on

Piazza!

• Final is on April 15th at 4pm

RECURSION

Types:

• Structural recursion

• Accumulative recursion

• Generative recursion

We’ve been

using this so far.

New!!!

New!!!

• Structural Recursion:

– Break problems into smaller problems using the recursive definition of

our data.

– recursive subproblem is always one step closer to a base case

– Uses a recursive template

• Accumulative Recursion:

– Recursion with an accumulator(s)

But these two are not necessarily independent!

STRUCTURAL V.S. ACCUMULATIVE

ACCUMULATIVE RECURSION
def acc_fn(remaining, acc):

if (base_case of remaining):

return … acc …

else:

…

return acc_fn(updated_remaining, updated_acc)

def fn(lst):

return acc_fn(initial_remaining, initial_acc)

• Accumulators “keep track” of something so that you can quickly return the

expected result

• Sometimes, you may need more than one accumulator.

Use acc to help

return the correct

result

Generative Recursion:
A Summary!
• It's recursion…

• Solving larger problem by solving subproblem(s) inspired by the

problem itself.

• There's no "structural" format:

– Recursing at 'different' places

– Recursing 'multiple' times

– Not always counting up/down by "one"

• Classic examples (shown in class):

– Palindromes

– Solving GCD's with Euclid's Algorithm

Example:
Euclidean Algorithm on GCD

Let m and n be integers such that m ≥ 𝑛 and 𝑚 = 𝑞𝑛 + 𝑟, where 0 ≤ 𝑟 < 𝑛. Then
the following is true:

gcd(𝑚, 𝑛) = gcd(𝑛, 𝑟)

Note:

- 𝑟 = 𝑚mod 𝑛

- Check out the proof for Euclidean Algorithm on Wikipedia

Code Analysis

def gcd(m,n):

if m == 0:

return n

Base Case #1

elif n == 0:

return m

Base Case #2

else:

return gcd(n, m%n)

Recursive call:

• 𝑛 ≤ 𝑚
• 0 ≤ m%n < n

https://en.wikipedia.org/wiki/Euclidean_algorithm

CQ 1: CONFIDENCE LEVEL

How confident are you with generative recursion?

A. Not at all. (i.e.What the fork is going on?)

B. I'm sort of confident but I would like more examples.

C. I'm sort of confident but I don't want to see more

examples.

D. I'm very confident with generative recursion.

CQ 2:

Does this solution use accumulative recursion?

A. Yes

B. No

C. I don’t know.

False

CQ 3:

Does this solution use accumulative recursion?

A. Yes

B. No

C. I don’t know

def recursion4(lst,boo):

if lst == []:

return boo

else: L[0] == L[-1]:

boo = (boo and (L[0] == L[-1]))

return recursion4(lst[1:-1],boo)

QUESTION 1

• Write an accumulatively recursive function record_digit(n) that

returns a list of integers of length 10, with each index from 0 to 9

represents a corresponding digit’s total appearances in the integer n.

You cannot use L.count().

• For example:

record_digit(19990514)=>[1,2,0,0,1,1,0,0,0,3]

0 1 2 3 4 5 6 7 8 9

QUESTION 2

Write an accumulatively recursive function count_max that

consumes a nonempty list of integers alon and returns the number of

times the largest integer in alon appears.

Note: - max and L.count()cannot be used in this question.

- Your function can only pass through the list once

For example,

count_max([1, 3, 5, 4, 2, 3, 3, 3, 5]) => 2

since the largest element of the list, 5, appears twice. Your function

should pass through the list only once.

QUESTION 3:
REDUCING NUMBERS
Write a function smaller that consumes a nonempty string s, containing only

numeric characters, and generates a new string by repeatedly removing the larger of
the first and last characters in s. If the first and the last number are the same,

remove the last one.

For example, starting from "5284", compare "5" and "4", and recurse on "284", which

will compare "2" and "4", and recurse on "28". Comparing "2" and "8", leads to
recursing on "2", which is the answer (since it is a string of length 1).

NOTE: Do not use min.

For example,

smaller("4325") => "2"

smaller("1") => "1"

smaller("2325") => "2"

smaller("8668") => "6"

QUESTION 4:
SKIPPING VALUES
Given a list L of positive integers, the skip-value of a list is the number of

steps to reach the end of the list, using the values in the list

• If L is empty, the skip value is 0

• If L is nonempty:

– Add 1 to the remaining skip value

– Move ahead L[0] places in the list, and repeat the process with the remainder

of the list from that place

Write a function skip_value to calculate the skip value of the list L.

For example,

skip_value([]) => 0

skip_value([1,1,1]) => 3

skip_value([2,100,1]) => 2

QUESTION 4:
TRACING EXAMPLES
skip_value([1,1,1])

 1+skip_value([1,1])

 1+(1+skip_value([1]))

 1+(1+(1+skip_value([])))

 1+(1+(1+0))

 3

skip_value([2,100,3,1,1,1])

 1+skip_value([3,1,1,1])

 1+(1+skip_value([1]))

 1+(1+(1+skip_value([])))

 1+(1+(1+0))

 3

QUESTION 5

Develop an accumulatively recursive function list_to_num that

consumes a nonempty list, digits,of integers between 0 and 9, and

returns the number corresponding to digits.

For example,

• list_to_num([9, 0, 8]) => 908

• list_to_num([8, 6]) => 86

• list_to_num([0, 6, 0]) => 60

