REMINDERS

• Assignment 7 due Wednesday, November 14th, at 10:00 AM
RUNTIME REVIEW

• Look at the “worst case” scenario (i.e. longest runtime)
• Assume function works (i.e. will not return an error when you run it)
• Based on the assumption learned in class (and in the modules)
RUNTIME REVIEW

• O(1) – Constant
 – does not depend on the size of the input
 – For numbers:
 • Numeric operations: +, *, /, -, %, //
 • max, min
 – For list L:
 • L[0], len(L)...
 • L.append(4)...

• O(n) – Linear
 – depends on the size of the input
 – For list L:
 • L[1:], max(L), L + L, sum(L), L.remove(0)...
 • list(map(lambda x: x+1, L))
RUNTIME REVIEW

• $O(n^2)$ – Quadratic
 – time proportional to square of size of the input
 – Be careful of abstract functions:
 • `list(map(lambda k: list(range(k)), list(range(n))))`

• $O(2^n)$ – Exponential
 – As size of input increases by 1, the run time doubles
 – example: Module 5, Slide 15: fib
RUNTIME EXAMPLE 1

Let n = len(L)
def fn(L):
 if L==[]:
 return 0
 else:
 return 1 + fn(L[1:])

Count steps for:
• Compare L with []
• Calculate L[1:]
• Call fn recursively on a list of length n-1
• Add 1 to the recursive call of fn

• T(n) = O(n) + T(n-1)
Let n = len(L)
def fn(L):
 ans = []
 for x in L:
 if x[0] == 'A':
 ans.append(x)
 return ans

Count steps for:
• Assign [] to ans
• Loop:
 – Number of Iterations
 – Asymptotic run time of the body of loop:
 • Check if x[0] == 'A'
 • ans.append(x)
• Return ans
Let n = len(L)
def fn(L):
 L1 = L[0::2]
 if L==[]:
 return []
 else:
 return fn(L1)

Count steps for:

- L1 = L[0::2]
- Compare L with []
- Call fn recursively on a list of length n/2
- T(n) = O(n) + T(n/2)
Q5

def fn(n):
 if n % 2 == 0:
 return "outcome1"
 elif n % 3 == 0:
 return "outcome2"
 elif n % 5 == 0:
 return "outcome3"
 else:
 return "outcome4"

Count steps for:

- Calculate n%2
- Compare it with 0
- Calculate n%3
- Compare it with 0
- Calculate n%5
- Compare it with 0
- Return the answer
QUESTION 2 - QUICKSORT

Consider a different way of sorting a list L of distinct integers:

- Let x be the first element of the list
- Let $lst1$ be all the elements in the list smaller than n
- Let $lst2$ be all the elements in the list larger than n
- Recursively quicksort $lst1$ and $lst2$

- $lst1 + [x] + lst2$

Write a function `quicksort` which consumes a list of distinct integers, lst, and sorts it using the quicksort algorithm.
EXAMPLE

quicksort([2, 3, 1, 4, 0])

→ quicksort([1, 0]) + [2] + \\n quicksort([3, 4])

→ (quicksort([0]) + [1]) + [2] + \\n ([3] + quicksort([4]))

→ ([0] + [1]) + [2] + ([3] + [4])

→ [0, 1] + [2] + [3, 4]

→ [0, 1, 2, 3, 4]
RUNTIME OF QUICKSORT

- **Worst case runtime**:
 - $T(n) = O(n) + T(n-1) \Rightarrow O(n^2)$
 - The list is already sorted

- In practice, quicksort can avoid the worst case most of the time, and, on average, runs on $O(n \log n)$ time.