REMINDERS

• Assignment 7 due Wednesday, March 18th, at 10:00 AM

• The final exam is on April 15th, at 4:00PM.
RUNTIME REVIEW

- $O(1)$ – Constant
- $O(\log n)$ - Logarithmic
- $O(n)$ – Linear
- $O(n \log n)$ – Log linear
- $O(n^2)$ – Quadratic
- $O(2^n)$ – Exponential
USEFUL SUMMATIONS

• $\sum_{i=1}^{n} 1 = O(n)$
• $\sum_{i=1}^{n} i = O(n^2)$
• $\sum_{i=1}^{n} n = O(n^2)$
• $\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = O(n^2)$
RECURRENCE RELATIONS

- $T(n) = O(1) + T(n - 1) \rightarrow O(n)$
- $T(n) = O(n) + T(n - 1) \rightarrow O(n^2)$
- $T(n) = O(1) + T(n/2) \rightarrow O(\log n)$
- $T(n) = O(n) + 2T(n/2) \rightarrow O(n \log n)$
 - $T(n) = O(n) + T(n/2) \rightarrow O(n)$
- $T(n) = O(1) + T(n - 1) + T(n - 2) \rightarrow O(2^n)$
 - $T(n) = O(1) + 2T(n - 1) \rightarrow O(2^n)$
 - $T(n) = O(n) + T(n - 1) + T(n - 2) \rightarrow O(2^n)$
 - $T(n) = O(n) + 2T(n - 1) \rightarrow O(2^n)$
Let n = len(L)
def fn(L):
 if L == []:
 return 0
 else:
 return 1 + fn(L[1:])

Count steps for:
• Compare L with []
• Calculate L[1:]
• Call fn recursively on a list of length n-1
• Add 1 to the recursive call of fn

T(n) = O(n) + T(n-1) => O(n^2)
Let \(n = \text{len}(L) \)

```python
def fn(L):
    L1 = L[0::2]
    if L==[]:
        return []
    else:
        return fn(L1)
```

Count steps for:

- \(L1 = L[0::2] \)
- Compare \(L \) with \([] \)
- Call \(\text{fn} \) recursively on a list of length \(n/2 \)
- \(T(n) = O(n) + T(n/2) => O(n) \)
def fn_b(s):
 if len(s) == 0:
 return ""
 else:
 return fn_b(s[1:]) + fn_b(s[2:])

Count steps for:
• `s[1:]` and `s[2:]`
• Call `fn_b` recursively on a list of length `n-1` and another list of length `n-2`.
• $T(n) = O(n) + T(n-1) + T(n-2) \Rightarrow O(2^n)$
def fn_f(L):
 if L == []:
 return 0
 elif len(L) == 1:
 return 1
 else:
 L1 = L[0:-1:2]
 L2 = L[1:-1:2]
 return fn_f(L1) + fn_f(L2)

Count steps for:
• List slicing of L[0:-1:2]
• Assign L[0:-1:2] to L1 and L2.
• Call fn_f recursively on list L1 and L2 of length n//2.
• T(n) = O(n) + 2T(n/2) => O(n log n)
CLICKER QUESTION 1A

a) Determine the worst-case run-time in terms of n.

def weird(n):
 lst = []
 while n > 0:
 lst.append(n)
 n = n//2
 return lst

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n \log n)$
E. $O(2^n)$
b) Determine the worst-case run-time in terms of n, where $n = \text{len}(\text{lst})$

```python
def sum_acc(lst, sum_so_far, pos):
    if pos == len(lst):
        return sum_so_far
    else:
        return sum_acc(lst, sum_so_far+L[pos], pos+1)

def sum_list2(lst):
    return sum_acc(lst, 0, 0)
```

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n^2)$
E. $O(2^n)$
e) Determine the worst-case run-time in terms of n, where $n = \text{len}(L)$

```python
def f(L):
    if L == []:
        return True
    elif L[0] % 3 == 0 and f(L[1:]):
        return False
    else:
        return f(L[1:])
```

A. $O(n)$
B. $O(\log n)$
C. $O(n \log n)$
D. $O(n^2)$
E. $O(2^n)$

More runtime practice are provided on cs116 website under:

Additional Materials => Module Practice Problems => Extra Practice for Module 7
QUESTION 2: TUT5 Q1

• Write a function `record_digit(n)` that returns a list of integers of length 10, with each index from 0 to 9 represents a corresponding digit's total appearances in the integer `n`. You cannot use `L.count()`.

• For example,

 `record_digit(19990514) => [1, 2, 0, 0, 1, 1, 0, 0, 0, 3]`
def record_digit_acc(s, acc):
 if len(s) == 0:
 return acc
 else:
 acc[int(s[0])] += 1
 return record_digit_acc(s[1:], acc)

def record_digit(n):
 acc = [0]*10
 return record_digit_acc(str(n), acc)

Question: Can we get an O(n) runtime solution?
Suggestions to consider when trying to improve efficiency of solutions you develop:

• look at recalculated values
• can you find a way to avoid slicing a list or string
• investigate append rather than + for lists
def record_digit_acc(s, i, acc):
 if i == len(s):
 return acc
 else:
 acc[int(s[i])]+=1
 return record_digit_acc(s, i+1, acc)

def record_digit(n):
 acc = [0]*10
 return record_digit_acc(str(n), 0, acc)
Q3: WHAT IS THE RUNTIME?

```python
def fn_3(n):
    if n==0:
        return 0
    elif fn_3(n-1) > n//2:
        return fn_3(n-1) - n//2
    else:
        return fn_3(n-1) + n//2
```

Possible to rewrite it with runtime $O(n)$?
def fn_3(n):
 if n==0:
 return 0
 recur = fn_3(n-1)
 if recur > n//2:
 return recur - n//2
 else:
 return recur + n//2
Consider a different way of sorting a list L of distinct integers:
- Let n be the first element of the list
- Let $lst1$ be all the elements in the list smaller than n
- Let $lst2$ be all the elements in the list larger than n
- Recursively quicksort $lst1$ and $lst2$

$$lst1 + [n] + lst2$$

Write a function `quicksort` which consumes a list of distinct integers, lst, and sorts it using the quicksort algorithm.
EXAMPLE

```latex
quicksort([2,3,1,4,0])
\rightarrow quicksort([1,0]) + [2] + \textcolor{red}{\text{quicksort([3,4])}}
\rightarrow (quicksort([0]) + [1]) + [2] + \textcolor{red}{([3] + quicksort([4]))}
\rightarrow ([0] + [1]) + [2] + ([3] + [4])
\rightarrow [0, 1] + [2] + [3, 4]
\rightarrow [0, 1, 2, 3, 4]
```
RUNTIME OF QUICKSORT

- **Worst case runtime:**
 - \(T(n) = O(n) + T(n-1) \Rightarrow O(n^2) \)
 - The list is already sorted

- In practice, quicksort can avoid the worst case most of the time, and, on average, runs in \(O(n \log n) \) time.