
TUTORIAL 9

D I C T I O N A R I E S A N D C L A S S E S

REMINDER/UPDATE

• Assignment 8 will be due on April 15th.

– We recommend that you start this assignment early, so you have

more time to seek help.

• Stay tuned to Piazza for information about the development of

the last few weeks of the course.

• Office Hours are now available by request, see Piazza for details.

OVERVIEW

• Dictionaries

• Classes

– __init__

– __repr__

– __eq__

– User defined class methods

DICTIONARIES

d = {key1:value1, key2:value2, …}

• Each element has a key (a way to look up info) and a value associated

with the key

• Unordered collection of key-value pairs

{keyX: valueX, keyY: valueY} == {keyY: valueY, keyX: valueX} => True

• Like a REAL dictionary (a real dictionary is a word-definition pair; word

= key, definition = value)

USEFUL DICTIONARIES
FUNCTIONS

• d[k] Get the value of k

• d[k]= v Set key-value pair where key = k and value = v

• d.keys() Creates a view of all the keys in d

• d.values() Creates a view of all the values in d

• d.pop(k) Removes key-value pair of k from d and returns the

value associated with k

• k in d returns True if k is a key in d

USEFUL DICTIONARIES
FUNCTIONS (RUNTIMES)

• d[k] O(1)

• d[k]= v O(1)

• list(d.keys()) O(n)

• list(d.values()) O(n)

• d.pop(k) O(1)

• k in d O(1)

Note: the dictionary runtimes are more complicated than this slide

reflects, but we will work under these assumptions.

QUESTION 1:
LIST_MULTIPLES

Write a function list_multiples that consumes a string s and

returns a list in alphabetical order containing every character in s that

appears more than once. Use dictionaries.

Examples:

list_multiples("abcd") => []

list_multiples("bacaba") => ["a", "b"]

list_multiples("gtddyucaadsa") => ["a", "d"]

QUESTION 2: XOR

Write a function xor that consumes two dictionaries (d1 and d2) and

returns a dictionary.

The returned dictionary will contain all the keys that appear in exactly

one of d1 or d2 (but not both).

The value associated with each key will be the same as the one found

in the original dictionary.

EXAMPLES
d1 = {1:'a', 2:'b', 3:'c', 4:'d'}

d2 = {5:'e', 6:'f', 7:'g', 8:'h'}

xor(d1,d2) => {1:'a', 2:'b', 3:'c', 4:'d',

5:'e', 6:'f', 7:'g', 8:'h'}

d3 = {5:'q', 6:'l', 7:'c', 8:'e'}

xor(d2,d3) => {}

d4 = {1:'a', 3:'f', 8:'u', 9:'t'}

xor(d1,d4) => {2:'b', 4:'d', 8:’u', 9:'t'}

CLASSES

• Python’s version of Racket structures

• Allows related information to be grouped together

• We’ll use __init__, __repr__, and __eq__ with the class

• We'll also write our own class methods

• We will use classes like we use any other type of data: lists,

dictionaries, and as arguments and return values for external

functions

__init__
class name:

def __init__(self, f1, f2, …):

self.field1 = f1

self.field2 = f2

… …

• Creates an object of this class:

x = name(field1_val,field2_val,…)

• Call the fields by: x.field1

• Racket’s version:

(define-struct name (field1_val field2_val …))

(name-field1 x)

Field of class you

want to use

(initialize)

__repr__

• If we try to print a class object, we’d get something like

<__main__.name instance at 0x12361c0>

• We can print a more informative message using the __repr__
command within the class definition

def __repr__(self):

return "name: {0},{1},…"\

.format(self.field1,

self.field2,…)

• __repr__ does not print anything itself; it is called indirectly when we
print or otherwise display an object from the class

• Think of __repr__ as "representation"

You can put the class

representation into any

form you like, so long as

you understand what

each field is

__eq__
def __eq__(self, other):

return isinstance(other, name) and \

self.field1 == other.field1 and \

self.field2 == other.field2 and \

... ...

• It will allow you to compare objects to see if they have same fields:

x == y => True

CLASS METHODS

class name:

def __init__(self, f1, f2, …):…

def __repr__(self):…

def __eq__(self, other):…

def foo(self, …):

Access field values: self.field1, …

fn may update field values, use field values

for calculations, print information, or

return information

Note: * self is an implicit parameter;

we don’t need to provide it

DEFINITION FOR THE
STUDENT CLASS

The remaining questions will use the following class:

A Student is a class with fields name, faculty, program,

year , and courses

- name is a non-empty string representing the student’s full name;

- faculty is a non-empty string representing the student’s faculty;

- We will use the full version; e.g "Environment" rather than "Env"

- program is a non-empty string representing the person’s program (or

major);

- year is a natural number representing the student’s academic year;

- courses is a list of strings representing the courses the student is

taking in the current term;

EXAMPLES OF STUDENT
OBJECTS:
• YQ_W = Student("Y.Q. Wang", "Mathematics", "Math/Teaching",

2, ["MATH 239", "MATH 237", "Math 235"])

• Paul_S = Student("Paul Shen", "Applied Health Science",

"Health Studies", 2,

["Math 106", "CS 234", "CS 200",

"HLTH 273", "ECON 101"])

• Dan_W = Student("Dan Wolczuk", "Mathematics", "Pure \

Mathematics", 1, ["MATH 148", "MATH 146",

"CS 116"])

• Logan_S = Student("Logan Stanley", "Science", "Chemistry",

1, ["CHEM 120", "MATH 127", "PHYS 111"])

QUESTION 3: ADD_COURSES
Write a class method add_courses in the Student class, which
consumes a Student object, self, and a list of strings, courses.
It adds the courses in courses to the student’s list of courses and
prints a message indicating the number of courses the student is now
taking.

Examples:

Paul_S.add_courses(["HLTH 230"]) will print

"Paul Shen is currently taking 6 course(s)."

and Paul_S.courses becomes ["Math 106", "CS

234", "CS 200", "HLTH 273", "ECON 101", "HLTH

230"])

YQ_W.add_courses([]) will print

"Y.Q. Wang is currently taking 3 course(s)."

and YQ_W.courses is unchanged

QUESTION 4:
ORGANIZE_BY_YEAR

Write a function organize_by_year outside the class, which

consumes a list of Student objects, los, and returns a dictionary

where the keys will be natural numbers associating with the students’

years and its associated values is a list of names of the Student in the

corresponding year.

Example:

L = [Paul_S, Nicole_V, Dan_W, Logan_S]

organize_by_year(L)

=> {1:["Dan Wolczuk", "Logan Stanley"],

2:[”Paul Shen", "Y.Q. Wang"]}

QUESTION 5:
IS_SAME_FACULTY

Write a function is_same_faculty that consumes a non-empty

list of students, los, and returns True if all the students belongs in

the same faculty. Otherwise, the function returns False.

Example:

Mathies = [YQ_W, Dan_W]

is_same_faculty(Mathies) => True

is_same_faculty([Nicole_V]) => True

is_same_faculty([Paul_S, Logan_S]) => False

