REMINDERS

• Final Exam is on Wednesday, August 1st
• Office hours and review sessions are available.
• Piazza is still open for questions and announcements

Check PIAZZA!!!
REVIEW: UNDIRECTED GRAPHS

• An undirected graph G is a set V, of vertices, and a collection E, of unordered pairs from V, called edges. We write $G = (V, E)$.

• (V_4, V_6) in Graph 1 is an edge
 – V_4, V_6 are neighbours
 – V_4, V_6 are adjacent

• Degree is number of neighbours of a vertex
 – Degree of V_5 in Graph 1 is 3

• G_1 is connected and G_2 is unconnected
Question 1:
Representing Graphs in Different Ways

Question:
Show how to represent the graph using:
• **Edge list** representation
• **Adjacency list** representation
• **Adjacency matrix** representation (call 'A' vertex 0, 'B' vertex 1, etc)
QUESTION 1 ANS: EDGE LIST REPRESENTATION

\[
\begin{array}{c}
\text{[['A', 'B'], ['A', 'C'], ['B', 'C'], ['B', 'D'], ['C', 'E'], ['E', 'F'], ['E', 'G']]}
\end{array}
\]

- Each pair only appears once.
- "Ordered"
QUESTION 1 Ans:
ADJACENCY LIST

{ 'A': ['B', 'C'],
 'B': ['A', 'C', 'D'],
 'C': ['A', 'B', 'E'],
 'D': ['B'],
 'E': ['C', 'F', 'G'],
 'F': ['E'],
 'G': ['E'] }

- Key: label of the vertex
- Value: List of adjacent vertices (neighbours)
QUESTION 1 ANS:

ADJACENCY MATRIX REPRESENTATION

```
A B C D E F G
```

```
[[0,1,1,0,0,0,0], #A
 [1,0,1,1,0,0,0], #B
 [1,1,0,0,1,0,0], #C
 [0,1,0,0,0,0,0], #D
 [0,0,1,0,0,1,1], #E
 [0,0,0,0,1,0,0], #F
 [0,0,0,0,1,0,0]] #G
```
QUESTION 2(A): DRAW THE GRAPH

Draw the graph corresponding to the following adjacency list.

```javascript
{'A': ['B', 'C'],
 'B': ['A', 'D', 'E', 'F'],
 'C': ['A'],
 'D': ['B', 'E'],
 'E': ['B', 'D', 'F'],
 'F': ['B', 'E']}
```
QUESTION 2(A): ANS

\[\text{Diagram of a graph with vertices labeled D, E, F, B, A, and C.} \]
QUESTION 2(B): DRAW THE GRAPH

Draw the graph corresponding to the following adjacency matrix.

\[
\begin{bmatrix}
0,1,0,0,0,0,0,0 \\
1,0,1,1,0,0,0,0 \\
0,1,0,1,0,0,0,0 \\
0,1,1,0,0,0,0,0 \\
0,0,0,0,0,1,0,0 \\
0,0,0,0,1,0,0,0 \\
0,0,0,0,0,0,0,0 \\
0,0,0,0,0,0,0,0
\end{bmatrix}
\]
QUESTION 2(B): ANS
QUESTION 3:
degree_adj_mat

Write the function `degree_adj_mat` that consumes a nonempty graph G (stored as an adjacency matrix) and a vertex number v, and returns the degree of vertex v in G.

Note that for adjacency matrix:
• the vertices are numbered $0, 1, \ldots, n-1$.
• G has a length n, and each list in G has a length n as well.

Challenge Question:
On your own, implement the functions `degree_adj_list` and `degree_edges`, to determine the degree of a vertex using the other representations.
REVIEW: TRAVERSALS

• Traversals:
 – Finding all connected vertices, starting from A

• Two approaches
 – **Breadth-first search** (from starting vertex, then neighbours, then neighbours of neighbours, etc.)
 – **Depth-first search** (from starting vertex follow path as far as possible, back up to closest unvisited neighbour, repeatedly)
QUESTION 4 (A)

- Perform bfs and dfs traversals for the following graphs.
- Starting from A and E
Recursive implementation of DFS traversal

def dfs(graph, v):
 visited = []
 return visit(graph, v, visited)

def visit(g, v, all):
 all.append(v)
 for neighbour in g[v]:
 if neighbour not in all:
 visit(g, neighbour, all)
 return all