TUTORIAL 8

EFFICIENCY
REMINDERS

• Assignment 7 due Wednesday, March 20th, at 10:00 AM
RUNTIME REVIEW

- Look at the “worst case” scenario (i.e. longest runtime)
- Assume function works (i.e. will not return an error when you run it)
- Based on the assumptions learned in class (and in the modules)
RUNTIME REVIEW

• O(1) – Constant
 – does not depend on the size of the input
 – For numbers:
 • Numeric operations: +, *, /, -, %, //
 • max, min
 – For list L:
 • L[0], len(L)...
 • L.append(4)...

• O(n) – Linear
 – depends on the size of the input
 – For list L(assume the length of L is n):
 • L[1:], max(L), L + L, sum(L), L.remove(0)...
 • list(map(lambda x: x+1, L))
RUNTIME REVIEW

• $O(n^2)$ – Quadratic
 – time proportional to square of size of the input
 – Be careful of abstract functions:
 • `list(map(lambda k: list(range(k)), list(range(n))))`

• $O(2^n)$ – Exponential
 – As size of input increases by 1, the run time doubles
 – example: Module 5, Slide 15: `fib`
RECURRANCE RELATIONS

• $T(n) = O(1) + T(n - 1) \rightarrow O(n)$

• $T(n) = O(n) + T(n - 1) \rightarrow O(n^2)$

• $T(n) = O(1) + T(n/2) \rightarrow O(\log n)$

• $T(n) = O(n) + 2T(n/2) \rightarrow O(n \log n)$

 - $T(n) = O(n) + 2T(n/2) \rightarrow O(n \log n)$

• $T(n) = O(1) + T(n - 1) + T(n - 2) \rightarrow O(2^n)$

 - $T(n) = O(1) + 2T(n - 1) \rightarrow O(2^n)$

 - $T(n) = O(n) + T(n - 1) + T(n - 2) \rightarrow O(2^n)$

 - $T(n) = O(n) + 2T(n - 1) \rightarrow O(2^n)$
USEFUL SUMMATIONS

- $\sum_{i=1}^{n} 1 = O(n)$
- $\sum_{i=1}^{n} i = O(n^2)$
- $\sum_{i=1}^{n} n = O(n^2)$
- $\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = O(n^2)$
Let n = len(L)
def fn(L):
 if L == []:
 return 0
 else:
 return 1 + fn(L[1:])

Count steps for:
• Compare L with []
• Calculate L[1:]
• Call fn recursively on a list of length n-1
• Add 1 to the recursive call of fn

• $T(n) = O(n) + T(n-1) \Rightarrow O(n^2)$
Let $n = \text{len}(L)$

def fn(L):
 ans = []
 for x in L:
 if x[0]=='A':
 ans.append(x)
 return ans

Count steps for:
- Assign [] to ans
- Loop:
 - Number of Iterations
 - Asymptotic run time of the body of loop:
 - Check if $x[0] == \text{'}A\text{'}$
 - ans.append(x)
- Return ans
- $\sum_{i=1}^{n} 1 = O(n)$
Let n = len(L)
def fn(L):
 L1 = L[0::2]
 if L == []:
 return []
 else:
 return fn(L1)

Count steps for:

- L1 = L[0::2]
- Compare L with []
- Call fn recursively on a list of length n // 2
- T(n) = O(n) + T(n/2) => O(n)
def fn(n):
 if n % 2 == 0:
 return "outcome1"
 elif n % 3 == 0:
 return "outcome2"
 elif n % 5 == 0:
 return "outcome3"
 else:
 return "outcome4"

Count steps for:
- Calculate \(n \% 2 \)
- Compare it with 0
- Calculate \(n \% 3 \)
- Compare it with 0
- Calculate \(n \% 5 \)
- Compare it with 0
- Return the answer
- \(O(1) \)
QUESTION 2 - QUICKSORT

Consider a different way of sorting a list L of distinct integers:
- Let \(x \) be the first element of the list
- Let \(\text{lst1} \) be all the elements in the list smaller than \(n \)
- Let \(\text{lst2} \) be all the elements in the list larger than \(n \)
- Recursively quicksort \(\text{lst1} \) and \(\text{lst2} \)
 - \(\text{lst1} + [x] + \text{lst2} \)

Write a function \texttt{quicksort} which consumes a list of distinct integers, \(\text{lst} \), and sorts it using the quicksort algorithm.

EXAMPLE

quicksort([2,3,1,4,0])

→ quicksort([1,0]) + [2] + \\
 quicksort([3,4])

→ (quicksort([0]) + [1]) + [2] + \\
 ([3] + quicksort([4]))

→ ([0] + [1]) + [2] + ([3] + [4])

→ [0, 1] + [2] + [3, 4]

→ [0, 1, 2, 3, 4]
RUNTIME OF QUICKSORT

- **Worst case runtime**:
 - $T(n) = O(n) + T(n-1) \Rightarrow O(n^2)$
 - The list is already sorted

- In practice, quicksort can avoid the worst case most of the time, and, on average, runs in $O(n \log n)$ time.