
Computer Science @ The University of Waterloo

CS 115, CS 116, CS 135, & CS 136
Common Style Guide

Last Updated: 2019.12.12

1 Introduction
The code you submit for assignments, as with all code you write, can be made
more readable and useful by paying attention to style. This includes the place-
ment of comments, whitespace, indentation, and choice of variable and function
names. None of these things affect the execution of a program, but they affect its
readability and extensibility. As in writing English prose, the goal is communica-
tion, and you need to think of the needs of the reader. This is especially important
when the reader is assigning you a grade. This guide is meant to serve as a lan-
guage independent common formatting guide for all of your programs that you
will write in first year computer science courses.

1.1 A Warning on Examples From Other Sources
The examples in the presentation slides, handouts and tutorials/labs are often con-
densed to fit them into a few lines; you should not imitate their condensed style
for assignments, because you do not have the same space restrictions.

For your assignments, use the coding style in this guide, not the style from
another textbook, or the condensed style from the presentation slides.

1.2 Warning About Copying and Pasting
Copying and pasting can make your assignment unmarkable. It may lead to char-
acters appearing in code that our auto graders cannot read correctly and hence
will be marked as incorrect. Do not include anything other than ASCII characters
(characters found on a standard US keyboard) into your text files.

1

2 Assignment Formatting

2.1 Comments
There are three types of comments: comments on a full line (use ;; in Racket, ##
in Python or // in C), those used in-line (use ; in Racket, # in Python or // in
C) or block comments (use /* comments */ in C). Comments should be used for
documentation purposes and to explain why code does what it does.
Use in-line comments sparingly. If you are using standard design recipes and
templates, and following the rest of the guidelines here, you should not need many
additional comments. Any such comment can either be put on its own line, or
tacked onto the end of a line of code, providing it fits.

2.2 Header
Your file should start with a header to identify yourself, the term, the assignment
and the problem. There is no specifically required format, but it should be clear
and assist the reader. The following is a good example in Racket.

;;
;; ***
;; Rick Sanchez (12345678)
;; CS 135 Fall 2019
;; Assignment 03, Problem 4
;; ***
;;

where you should replace ;; with ## in Python and by // in C.

2.3 Whitespace, Indentation and Layout
Whitespace should be used to make it easier to read code. This means not having
too much or too little whitespace in your code. In what follows, we give an ex-
ample of what our whitespacing will look like in our model solutions though you
can deviate from this slightly as long as the code is still readable.

• Insert two consecutive blank lines between functions or “function blocks”,
which include the documentation (e.g., design recipe) if applicable for the
function.

• Insert one blank line before the function header and one after the function
body.

2

• Blank lines may appear in function blocks but do not use more than one
consecutive blank line within a function block.

If the question asks you to write more than one function, the file should contain
them in the order specified by the assignment. Helper functions are placed either
all above the assignment function(s) they are helping or underneath the functions
they are helping. Remember that the goal is to make it easier for the reader to
determine where your functions are located.
Indentation plays a big part in readability. Some languages like Python force
indentation while others like Racket and C do not. Read the section specific style
guide to determine how to properly indent your code in your respective language.
When to start a new line (hit enter or return) is a matter of judgment. Try not to
let your lines get longer than about 70 characters, and definitely no longer than 80
characters. You do not want your code to look too horizontal, or too vertical.

Style marks may be deducted if you exceed 80 characters on any line of your
assignment.

2.4 Constant (Variable) and Function Identifiers
2.4.1 Naming Functions, Parameters, Variables and Constants

Function and parameter names should be meaningful, but not awkwardly long
nor cryptically short. The first priority should be to choose a meaningful name.
Names like salary or remittance would be appropriate in a program that calcu-
lates taxes. Sometimes a function will consume values that don’t have a meaning
attached, for example, a function that calculates the maximum of two numbers. In
that case, chose names that reflect the structure of the data. That is, n is for num-
bers, i for integers, lst for a list or lon for a list of numbers, and so on. Names
that are proper nouns like Newton should always be capitalized, Otherwise, use
the following function naming conventions:

• In Racket, use lower-case letters and hyphens, eg. top-bracket-amount
• In Python and C, you may use one of the following:

– Snake Case: use only lower case letters and separate words with an
underscore such as top_bracket_amount.

– Camel Case: begin with a lower/upper case letter; following words are
capitalized. For example topBracketAmount or if capitalizing the first
word, TopBracketAmount.

3

It is important to pick one convention and to be consistent with your naming con-
vention in any given file. In some cases, this will mean following the convention
given by the assignment (for example, if the function you are to write is my_fun,
then your helper functions should also use snake case.

2.4.2 Constants

Constants should be used to improve your code in the following ways:

• To improve the readability of your code by avoiding “magic” numbers. For
example, if you have code dealing with tax rates like Ontario’s HST, you
might want a constant such as taxes or hst and have this value set to 0.13.

• To improve flexibility and allow easier updating of special values. If the
value of taxes changes, it is much easier to make one change to the defini-
tion of the constant than to search through an entire program for the value
0.13. When this value is found, it may not be obvious if it refers to the tax
rate, or whether it serves a different purpose and should not be changed.

• To define values for testing and examples. As values used in testing and ex-
amples become more complicated (e.g., lists, structures, lists of structures),
it can be very helpful to define named constants to be used in multiple tests
and examples.

2.5 Summary
• Use two comment symbols for full-line comments and use one comment

symbol for in-line comments, and use them sparingly inside the body of
functions.

• Provide a file header for your assignments.
• Make it clear where function blocks begin and end
• Order your functions appropriately.
• Avoid overly horizontal or vertical code layout.
• Use reasonable line lengths.
• Choose meaningful identifier names and follow our naming conventions.
• Avoid use of “magic numbers”.

Style marks may be deducted if you have poor headers, identifier names,
whitespace, indentation or layout.

4

3 The Design Recipe: Functions

Warning! This style guide will be used for assessment (i.e., assignments and
exams).

We hope you will use the design recipe as part of the process of working out
your solutions to assignment questions. If you hand in only code, even if it works
perfectly, you will earn only a fraction of the marks available. Elements of the
design recipe help us to understand your code.

3.1 Purpose
The purpose statement has two parts: an illustration of how the function is applied,
and a brief description of what the function does. The description does not have
to explain how the computation is done; the code itself addresses that question.

• The purpose starts with an example of how the function is applied, which
uses the same parameter names used in the function header.

• Do not write the word “purpose”.
• The description must include the names of the parameters in the purpose

to make it clear what they mean and how they relate to what the function
does (choosing meaningful parameter names helps also). Do not include
parameter types and requirements in your purpose statement — the contract
already contains that information.

• If the description requires more than one line, “indent” the next line of the
purpose 2 or 3 spaces.

• If you find the purpose of one of your helper functions is too long or too
complicated, you might want to reconsider your approach by using a differ-
ent helper function or perhaps using more than one helper function.

3.2 Contract
The contract contains the name of the function, the types of the arguments it con-
sumes, and the type of the value it produces. The contract is analogous to func-
tions defined mathematically that map from a domain to a co-domain (or more
loosely to the range of the function).

5

;; quot: Nat Nat -> Nat

See your specific course style guide for information about valid types in the lan-
guage being used. What follows are some of these more common types:
Any Any value is acceptable
(anyof T1 T2...) Mixed data types. For example, (anyof Int Str) can

be either an Int or a Str; (anyof Int False) can be
either an Int or the value False, but not True.

Int Integers: ...-2, -1, 0, 1, 2...

Nat Natural Numbers (non-negative Integers): 0, 1, 2...

Num or Float Any non-integer value
Str String (e.g.,"Hello There", "a string")
X, Y, ... Matching types to indicate parameters must be of the

same type. For example, in the following contract, the X

can be any type, but all of the X’s must be the same type:
my-fn: X (listof X) -> X

Bool Boolean values (True and False)
(listof T) A list of arbitrary length with elements of type T,

where T can be any valid type. For example: (listof
Any), (listof Int), (listof (anyof Int Str)).

(list T1 T2...) A list of fixed length with elements of type T1, T2, etc.
For example: (list Int Str) always has two
elements: an Int (first) and a Str (second).

User_Defined For structures/new class user-defined types. Capitalize
your user-defined types.

Please note that Num is the type used in Racket (CS115/135) but Float is the type
used in Python and C (CS 116/136).

3.2.1 Additional Contract Requirements

If there are important constraints on the parameters that are not fully described in
the contract, add an additional requires section after the contract. Single require-
ments can be on one line. Multiple requirements should start on a separate line
and each line should be indented 2 or 3 spaces. For example in Racket:

;; quot: Nat Nat -> Nat
;; Requires:
;; n1 >= 0
;; n2 > 0
(quot n1 n2)

6

Note that in Racket, the function header is after the documentation whereas in
Python and C it will come before the documentation.

3.3 Examples
The examples should be chosen to illustrate “typical” uses of the function and to
illuminate some of the difficulties to be faced in writing it. Examples should cover
each case described in the data definition for the type consumed by the function.
The examples do not have to cover all the cases that the code addresses; that is the
job of the tests, which are designed after the code is written. It is very useful to
write your examples before you start writing your code. These examples will help
you to organize your thoughts about what exactly you expect your function to do.
You might be surprised by how much of a difference this makes.

For recursive data, your examples must include each base case and at least one re-
cursive case. Examples should cover edge cases whenever possible (for example,
empty lists).
3.4 Tests
Make sure that your tests are actually testing every part of the code. For example,
if a conditional expression has three possible outcomes, you have tests that check
each of the possible outcomes. Furthermore, your tests should be directed: each
one should aim at a particular case, or section of code. Some people write tests
that use a large amount of data; this is not necessarily the best idea, because if
they fail, it is difficult to figure out why. Others write lots of tests, but have several
tests in a row that do essentially the same thing. It’s not a question of quantity, but
of quality. You should design a small, comprehensive test suite.

Never figure out the answers to your tests by running your own code. Work
out the correct answers independently (e.g., by hand).

7

3.4.1 Testing Tips

Parameter type Consider trying these values
Num [or Float] positive, negative, 0, non-integer values, specific boundaries,

small and/or large values
Int positive, negative, 0
Bool true, false
Str empty string (""), length 1, length > 1, extra whitespace,

different character types, etc.
(anyof ...) values for each possible type
(listof T) empty, length 1, length > 1, duplicate values in list, special

situations, etc.
User-Defined special values for each field (structures), and for each

possibility (mixed types)

3.5 Additional Design Recipe Considerations
3.5.1 Helper Functions

Do not use the word “helper” in your function name: use a descriptive func-
tion name. Depending on which course you are taking, all design recipe ele-
ments might not be necessary for helper functions. Purpose and contracts however
should always be included. You are not required to provide tests for your helper
functions (but often it is a very good idea). In the past, we have seen students avoid
writing helper functions because they did not want to provide documentation for
them. This is a bad habit that we strongly discourage. Writing good helper func-
tions is an essential skill in software development and having to write a purpose
and contract should not discourage you from writing a helper function. Marks
may be deducted if you are not using helper functions when appropriate. Helper
functions should be placed before the required function(s) in your submission.

Functions we ask you to write require a full design recipe. Helper functions
need no examples or tests but must have all of the other design recipe
elements as required by your course.

8

3.5.2 Wrapper Functions

If the required function is the wrapper function, then include the examples and
tests with it. Otherwise, follow the same procedure that you would with a helper
function above.

3.6 Summary
• Purposes should be brief and describe everything your function is doing.
• Parameters names must be in the purpose and explained.
• Contracts should use appropriate types
• Requirements should be used to explain restrictions on input not able to be

captured by a contract.
• Examples for code should cover edge/base cases.
• Tests should be a small comprehensive suite covering both edge and typical

cases.
• Helper functions do not need examples and tests but require all other design

recipe elements.

9

