
Computer Science @ The University of Waterloo

CS 116
Course Specific Style Guide

Last Updated: 2019.10.15

1 Introduction
In addition to the common style guide for CS courses at the University of Wa-
terloo, this document will help explain the course specific changes needed for CS
116. This document will also include specific examples outlining how the style
guide should look for this course.

2 Assignment Formatting Changes
With Python, functions that we write can now do more than simply produce a
value. With mutation, a function can change the value of list, dictionary, or ob-
ject arguments, or have other effects. While allowing programs to do even more,
the introduction of mutation requires changes to some steps of our design recipe,
along with the introduction of a new step. Students should first read the common
first year style guide before this document.

2.1 Whitespace
As Python is an indentation language, whitespace will largely be forced by the
structure of the language. Be consistent and either use two spaces for indentation
or 4 spaces throughout all of your assignments. Do not mix tab characters and
spaces as it will cause errors when running in Python. Always use spaces (check
your IDE for instructions as to how to make your tab character type in spaces
instead of tab characters). Also note that import calls should appear one line
after the header and should be listed in alphabetical order. Two blank lines should
follow these calls.

1

2.2 Naming Conventions
• The dash (“-”) character cannot be used as an identifier in Python. You

should instead use an underscore (“_”) where a dash would have been used
(e.g. tax_rate).

• Variables should begin with lower case letters (variables that represent lists
can be a single capital letter) and should be written in either snake case or
camel case.

2.3 Comments
In Python, use ## or # to indicate the start of a comment. Use ## for full line com-
ments and # for in-line comments. The rest of the line will be ignored. Racket
programs were generally short enough that the design recipe steps provided suf-
ficient documentation about the program. It is more common to add comments
in the function body when using imperative languages like Python. While there
will not usually be marks assigned for internal comments, it can be helpful to add
comments so that the marker can understand your intentions more clearly. In par-
ticular, comments can be useful to explain the role of local variables, if statements,
and loops. Comments should address the why and not how a program works.

2.4 Function Headers
The function header will now be the first thing in a function. Documentation
follows the header.

def circle_area(r)
’’’
Documentation Here
’’’

2.5 Python’s Docstring
Python programmers can attach documentation to functions (which the Python
help function displays) using documentation strings, or docstrings. We will use
a docstring for our purpose statements, contract and requirements, effects state-
ments and examples. It is placed directly after the function header. Everything
will be included in a single string. As this string will extend over multiple lines,

2

we will use three single quotes to signify the beginning and end of our docstring
for a function.

2.6 Helper and Wrapper Functions
Helper functions may be defined locally in your Python programs, but it is not
required nor recommended. Tests and examples are not required for any functions
you are not explicitly told to write by a question in CS 116 (eg. helper functions).
They are always required for functions you are asked to write unless a question
dictates otherwise.

2.7 Purpose
As before, your purpose statements should briefly explain what the function does
using parameter names to show the relationship between the input and the func-
tion’s actions.

There are two small changes when writing our purpose statements:

• Use "return" rather than "produce", to reflect the use of the return state-
ment in Python functions, when a function returns a value.

• As the purpose statement follows immediately after the header, we will now
omit the function call from our purpose statement.

2.8 Contract
There are a few significant omissions from the Racket types. Note that:

• Python does not have a symbol type. You should use strings or numbers in
the role of symbolic constants as needed. (Python does have an enumerated
type, but it is not used in CS 116).

• Python does not have a character type. Instead, use strings of length one.
• Python does not use the Num type. If a value can be either an integer or

non-integer value, use (anyof Int Float).

If there are additional restrictions on the consumed types, continue to use a
requirements statement following the contract. If there are any requirements on
data read in from a file or from standard input, these should be included in the
requirements statement as well.

The following table lists the valid Python types:

3

Any Any value is acceptable
(anyof T1 T2...) Mixed data types. For example, (anyof Int

Str) can be either an Int or a Str; (anyof
Int False) can be either an Int or the value
False, but not True.

Float Any non-integer value
Int Integers: ...-2, -1, 0, 1, 2...

Nat Natural Numbers (non-negative Integers): 0,
1, 2...

None The None value designates when a function
does not include a return statement or when
it consumes no parameters.

Str String (e.g.,"Hello There", "a string")
X, Y, ... Matching types to indicate parameters must

be of the same type. For example, in the
following contract, the X can be any type, but
all of the X’s must be the same type:
my-fn: X (listof X) -> X

Bool (Module 2) Boolean values (True and False)
(listof T) (Module 4) A list of arbitrary length with elements of

type T, where T can be any valid type. For
example: (listof Any), (listof Int),
(listof (anyof Int Str)).

(list T1 T2...) (Module 4) A list of fixed length with elements of type
T1, T2, etc. For example: (list Int Str)

always has two elements: an Int (first) and a
Str (second).

User_Defined (Module 9) For user-defined class types. Capitalize your
user-defined types.

(dictof T1 T2) (Module 9) A dictionary with keys of type T1 and
associated values of type T2.

4

2.9 Examples
Unlike in Racket, examples in Python cannot be written as code using the pro-
vided check module. Unfortunately, the function calls in the check functions
cannot come before the actual function definitions. Therefore, instead of writing
examples as code, we will include them as part of our function’s docstring. The
notation to write an example is to use fcn_call(input_data) => output. The
format of the example depends on whether or not the function has any effects.
Examples that fit on one line can be written as so. Otherwise the first sentence
should start on a new line and indented 2 or 3 spaces (be consistent).

If the function produces a value, then the example can be written as a function
call, with its expected value.
’’’
Example:

combine_str_num("hey", 3) => "hey3"
’’’

2.10 Testing
Python does not present us with a function like check-expect in Racket for test-
ing our programs. To emulate this functionality, you can download the check.py

module from the course website. This module contains several functions designed
to make the process of testing Python code straightforward, so that you can focus
on choosing the best set of test cases. You must save the module in the same
folder as your program, and include the line import check at the beginning of
each Python file that uses the module. You do not need to submit check.py when
you submit your assignments.

Our tests for most functions will consist of several parts; you only need to
include the parts that are relevant to the function you are testing. These additions
will be introduced in each module as necessary. What follows is sufficient to test
code in the beginning of the course.

1. Write a brief description of the test as the descriptive label in the testing
function or as a comment

2. If there are any global state variables to use in the test, set them to specific
values.

3. Call either check function (expect or within) with your function and the
expected value (which may be None). check function after the return value
test, once for each mutated value to be checked.

5

Additional information about testing:

• You should always set the values of every global state variable in every
test before calling any check functions, in case your function inadvertently
mutates their values.

• The two main functions included in check are check.expect and
check.within; these functions will handle the actual testing of your code.
You should only use check.within if you expect your code to produce a
floating point number or an object containing a floating point number. In ev-
ery other case, you should use check.expect. When testing a function that
produces nothing, you should use check.expect with None as the expected
value.

– check.expect consumes three values: a string (a label for the test,
such as “Question 1 Test 6” or a description of the test case), a value
to test, and an expected value. You will pass the test if the value to
test equals the expected value; otherwise, it will print a message that
includes both the value to test and the expected value, so that you can
see the difference.

– check.within consumes four values: a string (a label such as “Ques-
tion 1 Test 6”, or a description of the test), a value to test, an expected
value, and a tolerance. You will pass the test if the value to test and the
expected value are close to each other (to be specific, if the absolute
value of their difference is less than or equal to the tolerance); other-
wise, it will print a message that includes both the value to test and the
expected value, so that you can compare the results.

• Note: Examples should be rephrased as tests in Python since the check

module does not read the docstring for tests (see the exemplars below).

2.11 Final Thoughts
In what follows, we go module by module and discuss specific language features
that will be added as needed. The next several pages also includes lots of examples
for you to get some experience with writing code in Python. Be sure to refer back
to this guide

6

3 Module 1

3.1 Module 1: Basic Example with Check Expect

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 1 Sample

##

import check
import math

##Constants go here
lucky_seven = 7

def add_7(n):
’’’
Returns the integer n + 7.

add_7: Int -> Int

Examples:
add_7(0) => 7
add_7(-7) => 0
add_7(100) => 107

’’’
return n + lucky_seven

##Examples:

check.expect("Testing first example", add_7(0), 7)
check.expect("Testing second example", add_7(-7), 0)
check.expect("Testing third example", add_7(100), 107)

##Tests:

check.expect("Testing large negative", add_7(-1000), -993)
check.expect("Testing small positive", add_7(1), 8)
check.expect("Testing huge value", add_7(10**10), 10**10 + lucky_seven)

7

3.2 Module 1: Basic Example with Check Within

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 1 Sample

##

import check
import math

##Here is where constants would go if necessary

def circle_area(r):
’’’
Returns the area of a circle of given radius r.

circle_area: Float -> Float
Requires: r >= 0.0

Examples:
circle_area(0.0) => 0.0
circle_area(1.0) => 3.141592653589

’’’
return math.pi*r*r

##Examples:

check.within("Example 1: Zero area", circle_area(0.0), 0.0, 0.00001)
check.within("Example 2: Pi", circle_area(1.0), 3.1415926, 0.00001)

##Tests:

check.within("small value", circle_area(0.01), 0.0003141592, 0.00001)
check.within("large value", circle_area(100), 31415.926535, 0.00001)

8

3.2.1 Module 1: Return Strings

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 1 Sample

##

import check

def cat(s, t)
’’’
Returns the concatenation of two strings s and t

cat: Str Str -> Str

Examples:
cat("", "") => ""
cat("top", "hat") => "tophat"

’’’
return s + t

##Examples

check.expect("Testing first example", cat("", ""), "")

check.expect("Testing second example", cat("top", "hat"), "tophat")

##Tests

check.expect("Test one empty", cat("pot", ""), "pot")
check.expect("Test other empty", cat("", "cat"), "cat")
check.expect("Test duplicate", cat("too", "too"), "tootoo")

9

4 Module 2

4.1 Module 2: Recursive Example

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 2 Sample

##

import check

def factorial(n):
’’’
Returns the product of all the integers from 1 to n

factorial: Nat -> Nat

Examples:
factorial(0) => 1
factorial(1) => 1
factorial(5) => 120

’’’
if n == 0:

return 1
else:

return n * factorial(n - 1)

##Examples:

check.expect("Example 1: Zero factorial", factorial(0), 1)
check.expect("Example 2: One factorial", factorial(1), 1)
check.expect("Example 3: Five factorial", factorial(5), 120)

##Tests:

check.expect("Two factorial", factorial(2), 2)
check.expect("Seven factorial", factorial(7), 5040)
twenty_factorial = 20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2
check.expect("20 factorial", factorial(20), twenty_factorial)

10

5 Module 3
In module 3, we introduce side effects for the first time. This will bring some
changes to the design recipe.

5.1 Purpose
Actions functions perform may now include producing a value and the use of
input and print.

5.2 Effects
When a function’s role involves anything in addition to, or instead of, producing
a value, it must be noted in an effects statement. This includes:

• Printing to screen
• Taking input from user

Effects should be written after the purpose statement but before the contract. A
white space should precede and follow the effects section.

5.3 Examples
We also need to make additions to examples to account for printing and input from
keyboard:

• If the function involves some other effects (reading from keyboard or a file,
or writing to screen or a file), then this needs to be explained, in words, in
the example as well.

’’’
Example:

If the user enters Waterloo and Ontario when prompted by
enter_hometown() => None
and the following is written to the screen:

Waterloo, Ontario
’’’

The descriptions here need not be exact if the output is convoluted but
should provide a reasonable summary of what will be displayed.

11

• If the function produced a value and has effects, you will need to use a
combination of descriptions.
’’’
Example:

If the user enters Smith when prompted,
enter_new_last("Li", "Ha") => "Li Smith"
and the following is printed to the screen:

Ha, Li
Smith, Li
’’’

5.4 Testing
We need to make some additions to testing as well to account for side effects:

1. Write a brief description of the test as the descriptive label in the testing
function or as a comment

2. If there are any global state variables to use in the test, set them to specific
values.

3. If you expect user input from the keyboard, call
check.set_input.

4. If you expect your function to print anything to the screen, call
check.set_screen or check.set_print_exact.

5. Call either check function (expect or within) with your function and the
expected value (which may be None). check function after the return value
test, once for each mutated value to be checked.

Additional Notes:

• Step 3: If the value to test is a call to a function that prints to the screen,
you have two choices for checking the printing: check.set_screen and
check.set_print_exact.

You can use check.set_print_exact (which consumes one string for each
line you expect your function to print to the screen) before running the test.
When the test is run, in addition to comparing the actual and expected re-
turned values, the strings passed to check.set_print_exact are compared
to what is actually printed by your function call. Two messages will be
printed: one for the returned value and one regarding the printed strings.

12

Important: This command will not test for output printed to the screen
from a input call.

Alternatively, you can use check.set_screen (which consumes a string
describing what you expect your function to print) before running the test.
Screen output will have no effect on whether the test is passed or failed.
When you call check.set_screen, the next test you run will print both the
output of the function you are testing, and the expected output you gave to
check.set_screen. You need to visually compare the output to make sure
it is correct. As you are the one doing the visual comparison, you are also
the one to determine the format of the string passed to check.set_screen.

• Step 4: If your function uses keyboard input, you will need to use the com-
mand check.set_input before running the test. This function consumes
strings corresponding to the input that will be used instead of waiting for
data to be typed in when the function is called. You do not need to do any
typing for input when you run your tests. You will get an error if you do
not have enough strings in your call to check.set_input and your test will
fail if you don’t need all the provided strings. You must have exactly the
correct number of strings.

5.4.1 Module 3: Printing Example

Notice below you can choose to include that the function returns None or omit this
since the contract captures this information. Try to use only one of set_print_exact
or set_screen in your testing.

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 3 Sample

##

import check

def print_it_three_times(s):
’’’
Prints s on three lines, once per line

Effects: Prints to the screen

print_it_three_times: Str -> None

13

Examples:
print_it_three_times("") => None
and prints three blank lines
print_it_three_times("a") => None
and prints a once on each of three lines

’’’
print(s)
print(s)
print(s)

##Examples:

check.set_print_exact("", "", "")
check.expect("Example 1: Empty string", print_it_three_times(""), None)
check.set_print_exact("a", "a", "a")
check.expect("Example 2: Single character", print_it_three_times("a"), None)

##Examples using set_screen:

check.set_screen("Three blank lines")
check.expect("Example 1: Empty string", print_it_three_times(""), None)
check.set_screen("a on three separate lines")
check.expect("Example 2: Single character", print_it_three_times("a"), None)

##Tests:

check.set_print_exact("CS 116", "CS 116", "CS 116")
check.expect("Test random string", print_it_three_times("CS 116"), None)

##Tests using set_screen:

check.set_screen("CS 116 on three separate lines")
check.expect("Test random string", print_it_three_times("CS 116"), None)

14

5.4.2 Module 3: Multiple Keyboard Input

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 3 Sample

import check

def diff():
’’’
Reads two integers from the keyboard and prints the difference.

Effects:
Reads input from keyboard
Prints to screen

diff: None -> None

Examples:
If the user enters enters 5 and 3 after
diff() => None
is called, then 2 is printed to the screen

If the user enters enters 0 and 0 after
diff() => None
is called, then 0 is printed to the screen

’’’
x = int(input("Enter an integer"))
y = int(input("Enter another integer"))
return x - y

##Examples

check.set_input ("5", "3")
check.set_print_exact("2")
check.expect("Testing first example", diff(), None)

check.set_input ("0", "0")
check.set_print_exact("0")
check.expect("Testing second example", diff(), None)

##Tests

check.set_input ("1", "3")
check.set_print_exact("-2")
check.expect("Negative answer", diff(), None)

check.set_input ("-1", "-3")
check.set_print_exact("2")
check.expect("Negative inputs", diff(), None)

15

5.4.3 Module 3: Keyboard Input and Screen Output

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 3 Sample

##

import check

def mixed_fn(n, action):
’’’
Returns 2*n if action is "double", n/2 if action is "half",
and returns None otherwise. Further, if action is "string",
the user is prompted to enter a string and then n copies of
that string is printed on one line. For any other action,
"Invalid action" is printed to the screen.

Effects:
If action is "string":

Reads input form keyboard
Prints to Screen

If action is not "string", "half" or "double":
Prints to screen

mixed_fn: Nat Str -> (anyof Int Float None)

Examples:
mixed_fn(2, "double") => 4
mixed_fn(11, "half") => 5.5
mixed_fn(6, "oops") => None
and prints "Invalid action"

If the user inputs "a" after calling
mixed_fn(5, "string") => None
and "aaaaa" is printed

’’’
if action=="double":

return 2*n
elif action=="half":

return n/2
elif action=="string":

s = input("enter a non-empty string: ")
print (s*n)

else:
print ("Invalid action")

##Examples

check.expect("Try double", mixed_fn(2, "double"), 4)

16

check.within("Try half with odd", mixed_fn(11, "half"), 5.5, 0.0001)

check.set_print_exact("Invalid action")
check.expect("Invalid action",mixed_fn(6, "oops"), None)

check.set_input ("a")
check.set_print_exact("aaaaa")
check.expect("Try string", mixed_fn(5, "string"), None)

##Tests

check.within("Try half with even", mixed_fn(20, "half"), 10.0, 0.0001)

check.set_input ("hello")
check.set_print_exact("hellohellohello")
check.expect("Try string", mixed_fn(3, "string"), None)

check.set_print_exact("Invalid action")
check.expect("Invalid action", mixed_fn(2, "DOUBLE"), None)

##A test using set_screen:

check.set_input ("word")
check.set_screen("word repeated 10 times without spaces")
check.expect("try string", mixed_fn(10, "string"), None)

17

6 Module 4
In module 4, we introduce lists, mutable objects and mutation for the first time.
We need to update our effects and testing sections accordingly.

6.1 Purpose
Actions functions perform may include producing a value, mutations and the use
of input and print.

6.2 Effects
Our effects now can include:

• Printing to screen
• Taking input from user
• Mutating a parameter (eg. a list or in later modules, a dictionary or class

object)

6.3 Examples
We also need to make additions to examples to account for mutations:

If the function involves mutation and returns None, the example needs to reflect
what is true before and after the function is called.

’’’
Example:

If lst1 is [1,-2,3,4],
mult_by(lst1, 5) => None
and lst1 = [5,-10,15,20]

’’’

6.4 Testing
We now include mutation in our testing routine:

1. Write a brief description of the test as the descriptive label in the testing
function or as a comment

18

2. If there are any global state variables to use in the test, set them to specific
values.

3. If you expect user input from the keyboard, call
check.set_input.

4. If you expect your function to print anything to the screen, call
check.set_screen or check.set_print_exact.

5. Call either check function (expect or within) with your function and the
expected value (which may be None).

6. If the effects for the function include mutating global state variables or pa-
rameters, call the appropriate check function after the return value test, once
for each mutated value to be checked.

In the case of lists with check.within, a test will fail if any one of the components
of the list is not within the specified tolerance.

You should only mutate parameters in problems that explicitly state to do so. You
should also test for a lack of mutation for your questions (though you will not be
explicitly graded on this) as our backend tests might test for a lack of mutation of
given parameters.

Notice below how the helper function does not need examples.

6.4.1 Module 4: Mutation

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 4

##

import check

def add_ones_to_evens_by_position(lst, pos):
’’’
Mutates lst by adding 1 to each even value starting from position pos.

Effects: Mutates lst

add_ones_to_evens_by_position: (listof Int) Nat -> None
’’’

19

if pos < len(lst):
if lst[pos] %2 == 0:

lst[pos] = lst[pos] + 1
add_ones_to_evens_by_position(lst, pos+1)

def add_one_to_evens(lst):
’’’
Mutates lst by adding 1 to each even value

Effects: Mutates lst

add_one_to_evens: (listof Int) -> None

Examples:
if L = [],
add_one_to_evens(L) => None,
and L = [].

if L = [3,5,-18,1,0],
add_one_to_evens(L) => None,
and L = [3,5,-17,1,1]

’’’
add_ones_to_evens_by_position(lst, 0)

##Examples:
L = []
check.expect("Empty list", add_one_to_evens(L), None) #check return
check.expect("Empty list (checking L)", L, []) # check mutation

L = [3,5,-18,1,0]
check.expect("Empty list", add_one_to_evens(L), None) #check return
check.expect("Empty list (checking L)", L, [3,5,-17,1,1]) # check mutation

##Tests:
L = [2]
check.expect("One even number", add_one_to_evens(L), None) #check return
check.expect("One even number (checking L)", L, [3]) #check mutation

L = [7]
check.expect("One odd number", add_one_to_evens(L), None) #check return
check.expect("One odd number (checking L)", L, [7]) #check mutation

L = [1,4,5,2,4,6,7,12]
check.expect("General case", add_one_to_evens(L), None) #check return
check.expect("General case (checking L)", L, [1,5,5,3,5,7,7,13]) #check mutation

20

6.4.2 Module 4: Mutation

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 4

##

import check

def add_evens(lst):
’’’
Returns the sum of all even numbers

add_evens: (listof Int) -> Nat

Examples:
add_evens([]) => 0,
add_evens([3,5,-18,1,0]) => -18,

’’’
add = 0
if lst == []:

return 0
elif lst[0] % 2 == 0:

add = lst[0]
return add + add_evens(lst[1:])

##Examples:
L = []
check.expect("Empty list", add_evens(L), 0) #check return
check.expect("Empty list (checking L)", L, []) # check non-mutation
L = [3,5,-18,1,0]
check.expect("Empty list", add_evens(L), -18) #check return
check.expect("Empty list (checking L)", L, [3,5,-18,1,0]) # check non-mutation

##Tests:
L = [2]
check.expect("One even number", add_evens(L), 2) #check return
check.expect("One even number (checking L)", L, [2]) #check non-mutation
L = [7]
check.expect("One odd number", add_evens(L), 0) #check return
check.expect("One odd number (checking L)", L, [7]) #check non-mutation
L = [1,4,5,2,4,6,7,12]
check.expect("General case", add_evens(L), 28) #check return
check.expect("General case (checking L)", L, [1,4,5,2,4,6,7,12]) #check non-mutation

21

7 Module 5
7.0.1 Module 5: Accumulative Recursion

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 5 Accumulative Recursion

##

import check

def remember_fact(product, n0):
’’’
Returns the product of all the integers from 1 to n0
multiplied by the value in product

remember_fact: Nat Nat -> Nat
’’’
if n0 <= 1:

return product
else:

return remember_fact(product * n0, n0 - 1)

def factorial(n):
’’’
Returns the product of all the integers from 1 to n

factorial: Nat -> Nat
Requires: r >= 0.0

Examples:
factorial(0) => 1
factorial(1) => 1
factorial(5) => 120

’’’
return remember_fact(1, n)

##Examples:

check.expect("Example 1: Zero factorial", factorial(0), 1)
check.expect("Example 2: One factorial", factorial(1), 1)
check.expect("Example 3: Five factorial", factorial(5), 120)

##Tests:

check.expect("Two factorial", factorial(2), 2)
check.expect("Seven factorial", factorial(7), 5040)
twenty_factorial = 20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2
check.expect("20 factorial", factorial(20), twenty_factorial)

22

7.0.2 Module 5: Generative Recursion

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 5 Generative Recursion

##

import check

def is_palindrome(s):
’’’
Returns True if and only if s is a palindrome and False otherwise.

is_palindrome: Str -> Bool

Examples:
is_palindrome("") => True
is_palindrome("a") => True
is_palindrome("abba") => True
is_palindrome("abca") => False

’’’
if len(s) < 2:

return True
else:

return s[0] == s[-1] and is_palindrome(s[1:-1])

##Examples:

check.expect("Example 1: Empty", is_palindrome(""), True)
check.expect("Example 2: Single Character", is_palindrome("a"), True)
check.expect("Example 3: Palindrome", is_palindrome("abba"), True)
check.expect("Example 4: Non-Palindrome", is_palindrome("abca"), False)

##Tests:

check.expect("Long Palindrome", is_palindrome("aba"*20), True)
check.expect("Short Palindrome", is_palindrome("aa"), True)
check.expect("Almost Palindrome", is_palindrome("aaaaabcaaaaaa"), False)

23

7.0.3 Module 5: Local Helper Function

Notice how the helper function awkwardly doesn’t include the parameter n but
must reference it to make sense of what the function does. The local helper func-
tion can access parameters that are part of the containing function.

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 5 Local Helper Function

##

import check

def fib(n):
’’’
Returns nth Fibonacci number

fib: Nat -> Nat

Examples:
fib(0) => 0
fib(1) => 1
fib(10) => 55

’’’

def acc(n0, last, prev):
’’’
Returns nth Fibonacci number, where last is the n0th,
and prev is (n0-1)th

acc: Nat Nat Nat -> Nat
’’’
if n0 >= n:

return last
else:

return acc(n0 + 1, last + prev, last)

Body of fib4
if n == 0:

return 0
else:

return acc(1,1,0)

##Examples:

check.expect("Example 1: f0", fib(0), 0)
check.expect("Example 2: f1", fib(1), 1)

24

check.expect("Example 3: f10", fib(10), 55)

##Tests:

check.expect("f2", fib(2), 1)
check.expect("f3", fib(3), 2)
check.expect("f5", fib(5), 5)

25

8 Module 9
In module 9, we introduce the data type dictionary as well as classes. Testing
for dictionaries is analogous to lists (in particular, you may need to check if a
dictionary has been mutated). Use (dictof key:value) in documentation.

8.1 Python Classes (Module 9)
We can define new types using a Python class. Each class should contain "magic"
methods (__init__, __repr__, __eq__) to make the class easy to use. Class
names should begin with a capital letter. Following the class definition, the fields
should be listed in a docstring consisting of the field name and hte type of the
field in parentheses. Requirements on the parameters should then follow as done
below:

’’’
Fields:

hour (Nat)
minute (Nat)
second (Nat)

Requires:
0 <= hour < 24
0 <= minute, second < 60

’’’

The description for __init__ should include the statement

’’’
Constructor: Create a Time object by calling Time(h, m, s)
’’’

followed by the contract and requirements:

’’’
__init__: Time Nat Nat Nat -> None
Requires: 0 <= h < 24, and 0 <= m, s < 60
’’’

The usual conventions for our design recipe still apply for other class methods,
including __repr__ and __eq__. Examples for magic methods are not required
but are required for all other class methods you write. When writing functions that
consume or return objects of a user-defined class, the standard style guidelines still
apply.

26

When writing class methods (functions inside the class definition that can be
called using Python’s dot notation), remember that the first parameter is always
called self and its type in the contract is the [capitalized] name of the class. The
purpose, effects, contracts and requirements, and examples should be written fol-
lowing the standard style guidelines. You can use self in the purpose statement.
Note, though, that your tests for class methods cannot be included in the class.
They must be defined after the full class definition.

Note that if a class is given to you but is missing documentation, then you do
not need to fill in design recipe elements unless specifically told to do so.

8.1.1 Module 9: Dictionaries

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 9 Dictionaries

##

import check

def character_count(sentence):
’’’
Returns a dictionary of the character count of letters in sentence.

character_count: Str -> (dictof Str Nat)

Examples:
character_count(’’) => {}
character_count(’a’) => {’a’:1}
character_count(’banana’) => {’a’:3, ’b’:1, ’n’:2}

’’’
characters = {}
for char in sentence:

if char in characters:
characters[char] = characters[char] + 1

else:
characters[char] = 1

return characters

##Examples:

check.expect("Example 1: Empty", character_count(’’), {})
check.expect("Example 2: Singleton", character_count(’a’), {’a’:1})

27

##Note that the order of the dictionary below does not matter
check.expect("Example 3: Typical", character_count(’banana’), {’n’:2, ’a’:3, ’b’:1})
check.expect("Example 3: Typical", character_count(’banana’), {’a’:3, ’b’:1, ’n’:2})

##Tests:

check.expect("Spaces", character_count(’hi mom’), {’h’:1, ’i’:1, ’ ’:1, ’m’:2, ’o’:1})
check.expect("Large", character_count(’a’*10000), {’a’:10000})

28

8.1.2 Module 9: Classes

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 9: Classes

##

import check

##Useful constants
seconds_per_minute = 60
minutes_per_hour = 60
seconds_per_hour = seconds_per_minute * minutes_per_hour

class Time:
’’’
Fields:

hour (Nat)
minute (Nat)
second (Nat)

Requires:
0 <= hour < 24
0 <= minute, second < 60

’’’

def __init__(self, h, m, s):
’’’
Constructor: Create a Time object by calling Time(h,m,s),

__init__: Time Nat Nat Nat -> None
Requires: 0 <= h < 24, and 0 <= m, s < 60
’’’
self.hour = h
self.minute = m
self.second = s

def __repr__(self):
’’’
Returns a string representation of self
(Implicitly called by print(t), where t is of time Time)

__repr__: Time -> Str
’’’
#The 0:0=2d means display 2 digits.
return "{0:0=2d}:{1:0=2d}:{2:0=2d}".format(

self.hour, self.minute, self.hour)

def __eq__(self, other):

29

’’’
Returns True if self and other are considered equal, and False otherwise
(Implicitly called when for t1 == t2 or t1 != t2, where
t1 is a Time value, and t2 is of type Any)

__eq__: Time Any -> Bool
’’’
return isinstance(other, Time) and \

self.hour == other.hour and \
self.minute == other.minute and \
self.second == other.second

##Note this is a class method
def time_to_seconds(self):

’’’
returns the number of seconds since midnight for self

time_to_seconds: Time -> Nat

Examples:
If midnight is Time(0,0,0),
then midnight.time_to_seconds() => 0,

if just_before_midnight is Time(23,59,59),
then just_before_midnght.time_to_seconds(t) => 86399
’’’
return (seconds_per_hour * self.hour) + \

seconds_per_minute * self.minute + self.second

##Note this is a function.
def earlier(time1, time2):
’’’
Returns True if and only if time1 occurs before time2, False otherwise.

earlier: Time Time -> Bool

Examples:
just_before_midnight = Time(23, 59, 59)
noon = Time(12, 0, 0)
earlier(noon, just_before_midnight) =>True
earlier(just_before_midnight, noon) => False

’’’
return time1.time_to_seconds() < time2.time_to_seconds()

##A sample test for __init__
midnight = Time(0, 0, 0)
check.expect("Example __init__ hour", midnight.hour, 0)
check.expect("Example __init __minute", midnight.minute, 0)
check.expect("Example __init__ second", midnight.second, 0)

##A sample test for __repr__
midnight = Time(0, 0, 0)

30

check.set_print_exact("00:00:00")
check.expect("Example __repr__", print(midnight), None)

##A sample test for __eq__
midnight = Time(0, 0, 0)
midnight2 = Time(0, 0, 0)
notmidnight = Time(0, 0, 1)
check.expect("Example __eq__", midnight == midnight2, True)
check.expect("Example __eq__", midnight == notmidnight, False)

##Examples for time_to_seconds:

##useful values for examples and testing:
midnight = Time(0, 0, 0)
just_before_midnight = Time (23, 59, 59)
noon = Time (12, 0, 0)
eight_thirty = Time(8, 30, 0)
eight_thirty_and_one = Time (8, 30, 1)

check.expect("midnight: min answer", midnight.time_to_seconds(), 0)
check.expect("just before midnight: max answer",

just_before_midnight.time_to_seconds(), 86399)

##Tests for time_to_seconds:

check.expect("Noon", noon.time_to_seconds(), 12*seconds_per_hour)
check.expect("Eight Thirty",

eight_thirty.time_to_seconds(), 17 * seconds_per_hour // 2)
check.expect("Eight Thirty and 1", eight_thirty_and_one.time_to_seconds(),

17 * seconds_per_hour // 2 + 1)

##Examples for earlier:

check.expect("before", earlier(noon, just_before_midnight), True)
check.expect("after", earlier(just_before_midnight, noon), False)

##Tests for earlier:
check.expect("before", earlier(midnight, eight_thirty) ,True)
check.expect("after", earlier(eight_thirty, midnight) ,False)
check.expect("just before", earlier(eight_thirty, eight_thirty_and_one),

True)
check.expect("just after", earlier(eight_thirty_and_one, eight_thirty),

False)
check.expect("same time", earlier(eight_thirty_and_one, eight_thirty_and_one),

False)

31

9 Module 10
In module 10, we introduce file input and output. This once again comes with
updates to effects and testing sections:

9.1 Purpose
Actions Function perform may include producing a value, mutations, the use of
input and print, as well as any file operations.

9.2 Contracts
If a specific format for a file is required, this needs to be stated in the requirements.
Functions that are passed strings to files must also be ensured to exist.

9.3 Effects
Our effects now can include:

• Printing to screen
• Taking input from user
• Mutating a parameter (eg. a list or dictionary or class object)
• Reading a file
• Writing to a file

9.4 Examples
We also need to make additions to examples to account for file input and output.
Do your best to describe what is printed to files and what is required from files.

’’’
Example:

If the user enters Smith when prompted,
enter_new_last("Li", "Ha") => "Li Smith"
and the following is printed to "NameChanges.txt":

Ha, Li
Smith, Li
’’’

32

9.5 Testing
At least we can now state our full testing module

1. Write a brief description of the test as the descriptive label in the testing
function or as a comment (including a description of file input when appro-
priate).

2. If there are any global state variables to use in the test, set them to specific
values.

3. If you expect user input from the keyboard, call
check.set_input.

4. If you expect your function to print anything to the screen, call
check.set_screen or check.set_print_exact.

5. If your function writes to any files, call
check.set_file_exact.

6. Call either check function (expect or within) with your function and the
expected value (which may be None).

7. If the effects for the function include mutating global state variables or pa-
rameters, call the appropriate check function after the return value test, once
for each mutated value to be checked.

Additional information about testing:

• Step 1: If your function reads from a file, you will need to create the file
(using a text editor like Wing IDE) and save it in the same directory as your
aXXqY.py files. You do not need to submit these files when you submit your
code, but any test that reads from a file should include a comment with a
description of what is contained in the files read in that test.

• Step 5: If your function writes to a file, you will need to use the command
check.set_file_exact before running the test. The function consumes
two strings: the first is the name of the file that will be produced by the
function call in step 6, and the second is the name of a file identical to
the one you expect to be produced by the test. You will need to create the
second file yourself using a text editor.

The next call to check.expect or check.within will compare the two files
in addition to comparing the expected and actual returned values. If the files
are exactly the same, the test will print nothing; if they differ in any way,

33

the test will print which lines don’t match, and will print the first pair of
differing lines for you to compare.

There is also a function check.set_file that has the same parameters as
check.set_file_exact, which sets up a comparison of the two files when
all whitespace is removed from both files. Use this function only if explic-
itly told to on an assignment.

9.6 Module 10: File Input and Output

##

Rita Sanchez (12345678)
CS 116 Fall 2017
Module 10 File Input and Output

##

def file_filter(fname, minimum):
’’’
Opens the file fname, reads in each integer, and writes each integer > minimum
to a new file, "summary.txt".

Effects:
Reads the file called fname
Writes to file called "summary.txt"

file_filter: Str Int -> None
Requires:

0 <= minimum <= 100
fname exists

Examples:
If "empty.txt" is empty, then file_filter("empty.txt", 1)

will create an empty file named summary.txt
If "ex2.txt" contains 35, 75, 50, 90 (one per line) then

file_filter("ex2.txt", 50) will create a file
named "summary.txt" containing 75, 90 (one per line)

’’’
infile = open(fname, "r")
lst = infile.readlines()
infile.close()
outfile = open("summary.txt", "w")
for line in lst:

if int(line.strip()) > minimum:
outfile.write(line)

outfile.close()

##Test 1: empty file (example 1)

34

check.set_file_exact("summary.txt", "empty.txt")
check.expect("t1", file_filter("empty.txt", 40), None)
##Test 2: small file (example 2)
#eg2-summary contains 75 and 90 once per line.
check.set_file_exact("summary.txt", "eg2-summary.txt")
check.expect("t2", file_filter("ex2.txt", 50), None)
##Test 3: file contains one value, it is > minimum
check.set_file_exact("summary.txt", "one-value.txt")
check.expect("t3", file_filter("one-value.txt", 20), None)
##Test 4: file contains one value, it is < minimum
check.set_file_exact("summary.txt", "empty.txt")
check.expect("t4", file_filter("one-value.txt", 80), None)
##Test 5: file contains one value, it is minimum
check.set_file_exact("summary.txt", "empty.txt")
check.expect("t5", file_filter("one-value.txt", 50), None)
##Test 6: file contains 1-30 on separate lines
check.set_file_exact("summary.txt", "sixteen-thirty.txt")
check.expect("Q3T4", file_filter("thirty.txt", 15), None)

35

