
1

CS133: Developing

Programming Principles

Lecture 17
Exceptions and Files

2

CS 133 Course Notes Lecture 17, Slide 2

Exceptions

An exception is an unexpected,
unusual, or erroneous occurrence during
the execution of a computer program:

• Dividing by Zero

• Accessing invalid memory

• File not found

3

CS 133 Course Notes Lecture 17, Slide 3

Exceptions In Java

In Java, an exception is represented by
an object of type Exception :

• thrown at the point where the
exception occurs

• may be caught elsewhere in the
program:

• ArithmeticException

• ArrayIndexOutOfBoundsException

• FileNotFoundException

4

CS 133 Course Notes Lecture 17, Slide 4

Example

// Print the sum of array elements
public static void printTotal(int[] a) {

int i = 0, n = 0;
while (i < a.length) {

n += a[i++];
}
System.out.println(n);

}

This test
prevents us from
accessing
elements beyond
the end of the
array.

5

CS 133 Course Notes Lecture 17, Slide 5

Example

// Print the sum of array elements
public static void printTotal(int[] a) {

int i = 0, n = 0;
while (true) {

n += a[i++];
}
System.out.println(n);

}

Exception thrown when i equals array length

6

CS 133 Course Notes Lecture 17, Slide 6

Example

public static void printTotal(int[] a) {
int i = 0, n = 0;
try {

while (true) {
n += a[i++];

}
} catch (Exception e) {

System.out.println(n);
}

}

7

CS 133 Course Notes Lecture 17, Slide 7

try -catch Syntax

try {
Code that might throw an exception

} catch (Exception e) {
Code to be performed if an exception is thrown

in the try block
} finally {

Optional code to be executed regardless of

whether an exception was thrown or not
}

8

CS 133 Course Notes Lecture 17, Slide 8

Throwing an Exception

An Exception may be thrown by the system
itself (e.g., divide by zero) or by an explicit
throw statement:

throw new Exception-class-name (args)

When an exception is thrown, control is
transferred to an enclosing catch block

9

CS 133 Course Notes Lecture 17, Slide 9

Example

public static void hello() {
try {

throw new Exception("Hi");
} catch (Exception e) {

System.out.println("Hello world");
}

}

10

CS 133 Course Notes Lecture 17, Slide 10

Exception Class

Exception(String message)
Constructs a new Exception with the

specified message.

public String getMessage()
Returns the message String associated

with this Exception .

Subclasses of the Exception class usually

define other constructors and methods.

11

CS 133 Course Notes Lecture 17, Slide 11

Example

public static void hello() {
try {

throw new Exception("Hi");
} catch (Exception e) {

System.out.println(e.getMessage());
}

}

12

CS 133 Course Notes Lecture 17, Slide 12

throws Clause

public class A {
public static void a() throws Exception {

throw new Exception("Hi");
}

}

In general, if a method can throw an Exception
this possibility must be explicitly declared by a
throws clause.

13

CS 133 Course Notes Lecture 17, Slide 13

throws Clause

public class B {
public static void b() throws Exception {

A.a();
}

}

Since b calls A.a() , which may throw an
Exception , it requires a throws clause as
well.

14

CS 133 Course Notes Lecture 17, Slide 14

Exception Propagation

public static void main(String[] args) {
try {

B.b();
} catch (Exception e) {

System.out.println(e.getMessage());
}

}

15

CS 133 Course Notes Lecture 17, Slide 15

Exception Propagation

main(…)

b()

a()

call

call

Exception occurs in a

Propagated to b

Propagated to main
and caught

16

CS 133 Course Notes Lecture 17, Slide 16

An Uncaught Exception

ArrayIndexOutOfBoundsException: 5
at ExceptionEg.printTotal(ExceptionEg.java:9)
at ExceptionEg.main(ExceptionEg.java:18)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Nat ive Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unkn own Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)

If you don’t catch an Exception , it’s
caught by Java.

17

CS 133 Course Notes Lecture 17, Slide 17

Files

Why do we need to work with files?

• Save data between executions of a program.

• Work with more data than we have memory.

• Move data from one machine to another.

18

CS 133 Course Notes Lecture 17, Slide 18

Streams

In Java, all I/O is handled through
streams.

A stream is an object that delivers

data to a destination or takes data
from a source.

e.g., System.out and Scanner

19

CS 133 Course Notes Lecture 17, Slide 19

File Types

There are two major file types in Java:

1. Text files –

lines of characters

(e.g., email messages, Java code)

2. Binary files –

sequence of ones and zeros

(e.g., images, music,)

20

CS 133 Course Notes Lecture 17, Slide 20

File I/O in Java

Every class which performs file I/O in Java
must import the Java I/O package:

import java.io.*;

21

CS 133 Course Notes Lecture 17, Slide 21

Filenames

Files are initially referenced (“opened”)
using the naming convention appropriate
to the operating system:

C:\home\charles\cs133\Lecture-17.ppt

/u/claclark/cs133/Lecture-17.ppt

Afterwards, a file is referenced by its
associated stream object.

22

CS 133 Course Notes Lecture 17, Slide 22

Filenames in Windows

Due to limitations of DrJava on a Windows machine the
complete pathname of files must be specified.

C:\My Stuff\CS133\Assignment 2\out.txt

This can be quite annoying, since paths can be long
under Windows.

When working on the Macs in the labs, complete
pathnames are not required.

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

