
1

CS133: Developing

Programming Principles

Lecture 15
More on Inheritance: super , final ,

method resolution, Object

2

The CoopStudent class

public class CoopStudent extends Student
{ private boolean isOnWorkTerm = false;

private static final double COOP_FEE = 317.69;

public CoopStudent(String newName, int sID)
{ super(newName, sID);
}
public CoopStudent(String newName, String newAddress,

int sID)
{ super(newName, newAddress, sID);
}
public double calcFees()
{ return super.calcFees() + COOP_FEE;
}
// other methods omitted

}

CS 133 Course Notes Lecture 15, Slide 2

3

Accessing the parent class

• Notice that we can use the constructor
of Student
– called super(newName, sID)

• Notice the method calcFees uses
super in a different way

– not as a constructor, but to indicate which
class to look in for the (other) calcFees
method

Course NotesCS 133 Lecture 15, Slide 3

4

super as constructor

• Must be the first line in a constructor of a
derived class.

• If it’s not there, Java automatically inserts
super() as the first line.

• Must be super(Arguments) if superclass
constructor needs parameters.

CS 133 Course Notes Lecture 15, Slide 4

5

Accessing the parent class continued

• Using super as the name of the object
will use the method defined in the parent
(base) class.

• Similar to this , but pretends it is an

instance of the parent class.

CS 133 Course Notes Lecture 15, Slide 5

6

The calcFees method of the

CoopStudent class

So we can explain this method more fully:

public double calcFees()

{ return super.calcFees() + this.COOP_FEE;

}

Look in the super class

Call the calcFees method
in the super class

CS 133 Course Notes Lecture 15, Slide 6

7

super as object

• Can be used as an object name
– super .method(arguments) to access method in

superclass

• When used as object name, may only be
called once:

– Can’t do
super.super. method(arguments) .

• Only use super when overriding is involved.

CS 133 Course Notes Lecture 15, Slide 7

8

Inheritance

• What if CoopStudent wants to access
the method getName ?

• getName is not in its (direct) parent class
(i.e., Student) but it is in an ancestor
class (i.e., Person).

• Example:

Write a method upperName that prints
the name of the CoopStudent in
uppercase, one character per line.

CS 133 Course Notes Lecture 15, Slide 8

9

upperName

public void upperName()

{

}

CS 133 Course Notes Lecture 15, Slide 9

10

Inheritance of methods

• All public methods from parent classes
are inherited.

• Child classes can override these public
methods and also create new methods.

• private methods are not inherited, nor

can they be accessed.

CS 133 Course Notes Lecture 15, Slide 10

11

private methods not inherited

• Suppose Person had a private method,
changeNameToFirstInitial .
public class Person

{ …

private void changeNameToFirstInitial()

{

this.name = this.name.substr(0, 1);

}

…

}

• In Student , we cannot access this method, in
the class definition or in a Student object.

CS 133 Course Notes Lecture 15, Slide 11

12

Inheritance of instance variables

• Derived methods cannot access inherited
private instance variables directly.

• Must use public mutator and accessor

classes.

• Example:

name variable in Person is accessible

only by accessor/mutator methods.

CS 133 Course Notes Lecture 15, Slide 12

13

final

• Recall that

final int myValue = 12;

makes myValue a constant that cannot be

changed.

• We can use final in method signatures

in a similar way.

CS 133 Course Notes Lecture 15, Slide 13

14

Example

• In the Person class
public final void greeting()

{

System.out.println("Hello World");

}

• No subclass (like Student or

CoopStudent) can override this method!

CS 133 Course Notes Lecture 15, Slide 14

15

Resolving method calls

CoopStudent mike = new

CoopStudent("Mike", 123456789);

mike.setName("Michael");

mike.getName();

• How does the computer know where to
find the methods to perform?

> Class hierarchy

CS 133 Course Notes Lecture 15, Slide 15

16

Resolving method calls continued

mike.setName("Michael");

Person

Student

CoopStudent

Object

public void setName(String name)

public double calcFees()

public double calcFees()

CS 133 Course Notes Lecture 15, Slide 16

17

this vs. super

Note: this(…) , super(…) can only occur in constructor.

Note:this.foo(…) and super.foo(…) can occur in any

method of the derived class.

this.foo(…)

super.foo(…) super(…)

this(…)

Method call Constructor call

Start search in
target object class

Start search in
super class

Constructor in
current class

Constructor in
super class

CS 133 Course Notes Lecture 15, Slide 17

18

The class Object

• Every class in Java extends Object by
default.

• Provides the basic functionality you see in
any object of any type.

• No need to extend it explicitly.

CS 133 Course Notes Lecture 15, Slide 18

19

Object methods

• There are two methods in the Object
class that we care about

– toString() and equals(Object other)

• We typically override these methods with
more meaningful functionality

• Example: add toString to the Student
class

CS 133 Course Notes Lecture 15, Slide 19

20

Summary

• Accessing parent methods

• private methods are not inherited

• final modifier for methods

• Resolving method calls

• The Object class

CS 133 Course Notes Lecture 15, Slide 20

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

