
1

CS133: Developing CS133: Developing CS133: Developing CS133: Developing

Programming PrinciplesProgramming PrinciplesProgramming PrinciplesProgramming Principles

Lecture 14Lecture 14Lecture 14Lecture 14
Class hierarchies, super/subclasses,Class hierarchies, super/subclasses,Class hierarchies, super/subclasses,Class hierarchies, super/subclasses,

calling superclass constructors, calling superclass constructors, calling superclass constructors, calling superclass constructors,

overriding methodsoverriding methodsoverriding methodsoverriding methods

2

CS133 Course Notes Lecture 14, Slide 2

Hierarchies

• Information may be organized in a non-
linear manner.

• Hierarchies represent dependencies or
relationships in a non-linear, tree-like

structure.

• Examples:

– People/Students/Co-op students

– Classification of matter

3

CS133 Course Notes Lecture 14, Slide 3

Example

Person

InstructorStudent

Co-op Student Grad Student

4

CS133 Course Notes Lecture 14, Slide 4

Another example

Matter

Pure substancesMixtures

Heterogeneous Homogeneous Compounds Elements

5

CS133 Course Notes Lecture 14, Slide 5

Observations

• Notice that the root of the hierarchy is the
most general (Person, Matter)

• As we move down through the tree, we
become more specific

– The attributes become increasingly well-

defined.

– Example: Co-op Student is more specific than
Student, which is more specific than Person.

6

CS133 Course Notes Lecture 14, Slide 6

Observations continued

• Attributes are passed down the tree

– Example: if person has an address, then

students will also have an address.

• The CS/Java/O-O hierarchies will

guarantee the above point

– In “real life”, not all attributes are inherited

7

CS133 Course Notes Lecture 14, Slide 7

How does this relate to CS?

• We will treat these classes of things as
objects, and relate them together using

INHERITANCE

8

CS133 Course Notes Lecture 14, Slide 8

Person

• Suppose we know that all people have a
name and an address.

• We can do the following to the name and

address:

– Set

– Compare

– Retrieve

9

CS133 Course Notes Lecture 14, Slide 9

The Person class

public class Person
{ private String name;

private String address;

public Person(String newName)
{ this.name = newName;

this.address = "";
}

public Person(String newName,

String newAddress)
{ this.name = newName;

this.address = newAddress;
}

10

CS133 Course Notes Lecture 14, Slide 10

The Person class

public String getName()
{ return this.name;

}

public void setName(String newName)

{ this.name = newName;

}

public boolean sameName(Person other)

{ return

this.name.equalsIgnoreCase(
other.name);

}

// Also getAddress and setAddress and

// sameAddress

11

CS133 Course Notes Lecture 14, Slide 11

Person as Superclass

• Person is called the superclass (or base
class or parent class).

• This is the most general class.

• From this class, subclasses (or derived
classes or child classes) can inherit
properties (e.g., methods and attributes)
from the super class.

12

CS133 Course Notes Lecture 14, Slide 12

Person continued

• Using the University hierarchy again, we
will create a subclass of Person called
Student .

• Students are people, except they have a

student id, take courses and, of course,
pay fees.

13

CS133 Course Notes Lecture 14, Slide 13

public class Student extends Person

{ private int studentID;

private String[] courses = new String[6];

private int numCourses = 0;

private static final double PER_COURSE_FEE = 256.74;

public Student(String newName, int sID)

{ super(newName);

this.studentID = sID;

}

public Student(String newName, String newAddress,

int sID)

{ super(newName, newAddress);

this.studentID = sID;

}

The Student class

Indicates this is a
subclass of Person

Call the constructor
of the super class

Call the second
constructor of the
super class

14

CS133 Course Notes Lecture 14, Slide 14

public boolean equals(Student other)
{

return this.studentID == other.studentID &&
this.sameName(other) &&
this.sameAddress(other);

}

public String getStudentID()
{

return this.studentID;
}

public double calcFees()
{

return this.numCourses*PER_COURSE_FEE;
}

The Student class continued

15

CS133 Course Notes Lecture 14, Slide 15

Student class continued

16

CS133 Course Notes Lecture 14, Slide 16

super(Arguments)

• Calls the constructor of the immediate
superclass if there is one that can accept
the arguments.

• Must be first statement in constructor

• Otherwise, super() is inserted automatically

• Otherwise, there is a compile-time error.

• Here, Person 's constructors are called.

17

CS133 Course Notes Lecture 14, Slide 17

Student class continued

• A Student object will have a name, as
well as the getName and setName
methods even though they aren’t explicitly
defined in the class.

• Inherits them from the Person class.

• Notice that a Student object has access
to the instance variables of other Student
objects (e.g., for equals).

18

CS133 Course Notes Lecture 14, Slide 18

Example

> Student troy = new Student("Troy", 20000001);
> Student sandy = new Student("Sandy", "200 King St", 9 9);
> System.out.println(troy.getName());

> System.out.println(troy.calcFees());

> troy.setName("Troy Vasiga");
> System.out.println(troy.sameName(sandy));

> sandy.addCourse("CS 000");
> System.out.println(sandy.calcFees());

> sandy.getStudentID();

19

CS133 Course Notes Lecture 14, Slide 19

Overriding methods

• Sometimes when we specialize (i.e.,
create subclasses), we may want to
restrict or modify the methods of the
parent class for this particular subclass.

• So we may override a method in a
subclass using the same signature as the
super class method, but replacing the
body of the method.

20

CS133 Course Notes Lecture 14, Slide 20

Co-op Student

• Suppose we extend the Student class to
a subclass Co-op student.

– Co-op students may be on a work term, or on-

campus

– Co-op students pay an additional Co-op fee

21

CS133 Course Notes Lecture 14, Slide 21

The CoopStudent class

public class CoopStudent extends Student
{ private boolean isOnWorkTerm = false;

private static final double COOP_FEE = 317.69;

public CoopStudent(String newName, int sID)
{ super(newName, sID);
}
public CoopStudent(String newName, String newAddress,

int sID)
{ super(newName, newAddress, sID);
}

public double calcFees()
{ return super.calcFees() + COOP_FEE;
}

Override
calcFees
from
Student
class

22

CS133 Course Notes Lecture 14, Slide 22

The CoopStudent class

public void setWorkTerm(boolean status)

{ this.isOnWorkTerm = status;

}

public String location()

{ if (isOnWorkTerm) {

return this.getName() +

" is on a work term.";

} else {

return this.getName()+

" is on campus.";

}

}

}

23

CS133 Course Notes Lecture 14, Slide 23

Example: CoopStudent

> CoopStudent chantelle = new CoopStudent("Chantelle",

5555555);

> System.out.println(chantelle.getName());

> chantelle.onWorkTerm(true);

> System.out.println(chantelle.calcFees());

> chantelle.addCourse("ECE 476");

> chantelle.onWorkTerm(false);

> System.out.println(chantelle.calcFees());

> System.out.println(chantelle.location());

24

Terminology

• A base class is also known as a parent
class or the superclass.

• A derived class is also known as a child
class or the subclass.

• An ancestor class is a class that is a
parent or parent of a parent (etc.).

• If class A is an ancestor of class B, then
class B is a descendant class of class A.

CS133 Course Notes Lecture 14, Slide 24

25

Terminology

• X is a Y

means class X extends Y (or extends an
earlier extension of Y).

• X has a Y

means class X has an instance variable of
type Y.

Lecture 14, Slide 25Course NotesCS133

26

CS133 Course Notes Lecture 14, Slide 26

Definitions

• Overriding is when a method with the same
signature as in a superclass is written in a
subclass.
– Example: CoopStudent 's calcFees overrides

Student 's calcFees

• Overloading is when there are at least two
different methods with the same name and

return type, but with different types or numbers
of parameters.

– Example: constructor in Student is overloaded

27

CS133 Course Notes Lecture 14, Slide 27

Summary

• Inheritance

• Superclass, subclass

• Hierarchy

• super(…)

• Overriding methods

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

