CS133: Developing
Programming Principles

Lecture 16
Types, more method resolution,
casting

Recall from last d

ay

Object

Person

Stud

ent

CoopStudent

CS 133 Cour:

se Notes

Lecture 16, Slide 2




Types

Method resolution rules

» An object of a derived class is also an
object of any ancestor class.

CoopStudent marcus = new
Person CoopStudent("Marcus",4321);

marcus is a CoopStudent object
Student marcus is a Student object
marcus is a Person object

CoopStudent

Student kael =

new CoopStudent("Kael", 4444);

The reference (or static) type is Student

The object (or dynamic) type is CoopStudent
The Rules:

. The reference type determines whether a method
can be called.

. The object type determines which class's
implementation of the method is called.

CS 133 Course Notes Lecture 16, Slide 3

CS 133 Course Notes Lecture 16, Slide 4




Types and method resolution

Using method resolution

» Suppose we do the following:
Student kael = new

CoopStudent("Kael", 4444);
* Remember that CoopStudent s are Student s

» What value is returned by kael.calcFees() ?
» Answer:

CS 133 Course Notes Lecture 16, Slide 5

» Suppose we wish to keep track of all (4)
UWaterloo students.

« Some may be coop, others would be “just”
students.

 We would like to determine to total of all
the fees for all these students.

CS 133 Course Notes Lecture 16, Slide 6




Using method resolution
(continued)

/I array declaration and allocation

11 fill array
/I (Kael, Mike are in coop, Chantelle, Marcus are n

/I determine totalFees

ot)

Types and method resolution
(continued)

CS 133 Course Notes

Lecture 16, Slide 7

» What about the CoopStudent method

setWorkTerm , asin

kael.setWorkTerm(true);

* Answer:
* Why?

CS 133 Course Notes

Lecture 16, Slide 8




How to set the workterm?

Casting

» We need to tell Java to treat kael
CoopStudent , not just a Student

* So, we can say:

like a

CS 133 Course Notes

Lecture 16, Slide 9

» The same idea can be applied to numbers:

double mass = 3.00;
int massValue = mass;

Instead, we should say:

Question: What if mass = 3.67 above?

CS 133 Course Notes Lecture 16, Slide 10




Another inheritance example

» Recall the Coordinate class:

public class Coordinate
{ private int row;
private int col;

public Coordinate(int theRow, int theCol)
{ this.row =theRow;
this.col =theCol;

}
public int getRow()
{ return this.row;

}
public int getCol()
{ return this.col;

}

CS 133 Course Notes Lecture 16, Slide 11

Augmenting Coor di nat e

We could add some methods to Coordinate

public double distance(Coordinate other)
{'int xDiff = this.col — other.col;
int yDiff = this.row — other.row;
int sgDist = xDiff * xDiff + yDiff * yDiff;
return Math.sqrt(sgDist);

}

public String toString()

{ String s ="("+ this.row +"," + this.col +")";
return s;

}

public boolean equals(Coordinate other)

{return (this.row == other.row) &&
(this.col == other.col);

}

CS 133 Course Notes

Lecture 16, Slide 12




Extending the Coor di nat e class to
include a colour

import java.awt.Color;
public class ColourCoordinate extends Coordinate
{ private static final Color DEFAULT_COLOUR =

Color.BLACK;
private Color colour;
public ColourCoordinate(int row, int col,
Color aColour)
{ super(row, col);
this.colour = aColour;
}
public ColourCoordinate(int rows, int cols)
{ this(row, col, DEFAULT_COLOUR);
}
CS 133 Course Notes Lecture 16, Slide 13

Col our Coor di nat e class
continued

public Color getColour()

return this.colour;

}

public void setColour(Color aColour)

{
}

public String toString()
{

}

this.colour = aColour;

CS 133 Course Notes Lecture 16, Slide 14




Col our Coor di nat e class
continued

public boolean sameColour(
ColourCoordinate other)
{

}

public boolean equals(ColourCoordinate other)

{

return this.colour.equals(other.colour);

} /' end class

CS 133 Course Notes

Lecture 16, Slide 15

Using the Col our Coor di nat e
class: Valid or Invalid

Coordinate coord0 = new Coordinate(5, 4);

ColourCoordinate colourO = new
ColourCoordinate(0, 10, Color.RED);

Coordinate coordl = colourO;

ColourCoordinate colourl = coordO;

Object objl = colour0;
Object obj2 = coord0;

System.out.printin(coord1.toString());
System.out.printin(colourQ.toString());

CS 133 Course Notes Lecture 16, Slide 16




Using the Col our Coor di nat e
class continued

ColourCoordinate colour2 = new
ColourCoordinate(7, 6, Color.BLUE);

if (colour2.sameColour(colourQ)) ...
if (colour2.sameColour(coord0)) ...

double d1 = coordl.distance(coord0);
double d2 = coordl.distance(colour0);

double d3 = colour0.distance(coordl);
double d4 = colour0.distance(colour2);

CS 133 Course Notes Lecture 16, Slide 17

Summary

* Role of this and super in a derived
(extended) class

* Resolving method calls
» Casting

CS 133 Course Notes Lecture 16, Slide 18







ERROR: undefi ned
OFFENDI NG COVIVAND:

STACK:



