
1

CS133 Course Notes Lecture 24, Slide 1

CS133 Lecture 24

A Brief History of
Computer Science
(with thanks to
Prabhakar Ragde)

2

CS133 Course Notes Lecture 24, Slide 2

Why History?

• No shortage of good stories

• It helps us understand the way things are

• It helps us deal with the way things might
be

• But where to begin?

3

CS133 Course Notes Lecture 24, Slide 3

The Dawn of Computation

Babylonian cuneiform

(circa 2000 B.C)

4

CS133 Course Notes Lecture 24, Slide 4

Early Computation

• “Computer” = human being performing
computation

• Euclid’s algorithm for greatest common
divisor, circa 300 B.C.

• Al-Khwarizmi’s books on algebra using
Hindu-Arabic numerals, circa 800 A.D

• Isaac Newton (1643-1727)

5

CS133 Course Notes Lecture 24, Slide 5

1801: Jacquard loom

• Loom: weaves fabric

• Design of fabric
determined by
instructions on
punched cards

• Specification and
execution are
separated

6

CS133 Course Notes Lecture 24, Slide 6

Charles Babbage

• England, 1791-1871

• 1819: Difference Engine
(machine for tabulating
polynomials)

• Babbage’s design was
too ambitious

• 1834: Analytical Engine
(general-purpose
computing device)

7

CS133 Course Notes Lecture 24, Slide 7

Ada Augusta Byron

• England, 1815-1852

• Assisted Babbage in
explaining and
promoting his ideas

• Wrote articles
describing operation
and use of the
Analytical Engine

• The first computer
scientist?

8

CS133 Course Notes Lecture 24, Slide 8

Difference Engine

Around 1990Around 1880

9

CS133 Course Notes Lecture 24, Slide 9

1928: David Hilbert

• Goal of mathematics: to
formally prove statements
such as “Every even
number is the sum of two
prime numbers.”

• Proof: finite sequence of
deductions from axioms

• Ideally: every statement
can either be proved true
or false

10

CS133 Course Notes Lecture 24, Slide 10

Hilbert’s questions

• Is mathematics consistent? If so, we can’t
prove both a statement and its opposite.

• Is mathematics complete? If so, we can
either prove a statement, or prove its
opposite. Nothing is unprovable.

• Is there a procedure that can determine
the truth or falsity of any mathematical
statement?

11

CS133 Course Notes Lecture 24, Slide 11

1930: Kurt Gödel’s

answers
Surprising answers:

– Mathematics cannot prove
itself consistent

– If consistent, mathematics
is incomplete (Gödel
constructed a statement
which is true but has no
proof)

Gödel’s proofs are brilliant

but complicated

12

CS133 Course Notes Lecture 24, Slide 12

After Gödel’s proof

• Gödel’s unprovable statement was
constructed in a fairly artificial way

• Maybe every natural statement is provable
true or false?

• Maybe there is a procedure that can
determine if a statement is unprovable?

13

CS133 Course Notes Lecture 24, Slide 13

1936: Alan Turing

• Turing proved that there
is no procedure to
determine whether a
mathematical statement
has a proof.

• How can one prove that
such a procedure
doesn’t exist?
– By precisely defining what

“a procedure” is, and
showing that every
procedure fails to answer
the question

14

CS133 Course Notes Lecture 24, Slide 14

Turing’s proof

• Turing defined a formal model of computation

• His proof is much simpler than Gödel’s

• Key idea: programs that use other programs as
data (central to computer science today)

• His proof shows that many natural questions we
wish to ask about programs cannot be answered
by programs (e.g. do two programs compute the
same function?)

• All this before electronic computers even
existed!

15

CS133 Course Notes Lecture 24, Slide 15

But he was not the first…!

• Alonzo Church (1903-
1995) had already
published another
“uncomputability”
proof

• Church’s proof
resembled Gödel’s,
and was more
complicated than
Turing’s proof

16

CS133 Course Notes Lecture 24, Slide 16

The Church-Turing thesis

• The two formal models of computation described
by Church and Turing were quite different, but
proved to be equivalent

• This is true of all “reasonable” models
• Turing’s model was more intuitive and

influenced the design of hardware and early
software

• Church’s model was more mathematical, and
influenced later software, and methods to
formally describe and reason about
programming languages

17

CS133 Course Notes Lecture 24, Slide 17

1940: Alan Turing and

Enigma
• Enigma: German cipher

machine used to encipher
radio transmissions

• Encryption was based on
a secret key whose
discovery would crack the
code

• Turing and other British
mathematicians were
recruited to use statistical
methods to discover the
secret keys in use

18

CS133 Course Notes Lecture 24, Slide 18

1940-44: Colossus

• Series of machines
developed to crack
Enigma

• Colossus succeeded
in deciphering
German
communications

• It was the world’s first
electronic general
purpose computer

19

CS133 Course Notes Lecture 24, Slide 19

Turing after the war

• Worked at designing computer hardware
and software at UK universities

• 1950: Turing test – what would a program
have to do to be considered “intelligent”?

• 1954: untimely death at age 42

20

CS133 Course Notes Lecture 24, Slide 20

1944-5: ENIAC, U. Penn,

USA

21

CS133 Course Notes Lecture 24, Slide 21

1944-5: ENIAC, U. Penn,

USA

22

CS133 Course Notes Lecture 24, Slide 22

1944-5: ENIAC, U. Penn,

USA

23

CS133 Course Notes Lecture 24, Slide 23

John von Neumann (1903-

1957)

• EDVAC report(1946)

• Described key
aspects of modern
computers (CPU,
memory, stored
program)

24

CS133 Course Notes Lecture 24, Slide 24

1947: the transistor

• Solid-state switch

• Not fragile, leaky, or
slow, like vacuum
tubes or relays

• Rapidly miniaturized

• Moore’s Law (1965):
density of transistors
on a chip doubles
every 18 months

25

CS133 Course Notes Lecture 24, Slide 25

1950: Grace Murray

Hopper
• Wrote first compiler

(translated high level
language into
machine language)

• Key player in
standardization of
COBOL language
(especially English-
like syntax)

26

CS133 Course Notes Lecture 24, Slide 26

Grace Murray Hopper,

1906-92

27

CS133 Course Notes Lecture 24, Slide 27

FORTRAN (1957)

DIMENSION A[10]

I1 = 1

DO 3,5,6 J=1,10

3 I1 = I1 + I2

I2 = I1 - I2

5 A[J] = I1

6 STOP

28

CS133 Course Notes Lecture 24, Slide 28

LISP (1959)

(defun fhelper (n)

(if (= n 1)

‘(1 1)

(let (pl (fhelper (- n 1)))

(cons (+ (car pl)
(cadr pl)) pl))))

(defun fib (n)

(reverse (fhelper n)))

29

CS133 Course Notes Lecture 24, Slide 29

ALGOL (1960)

begin

integer prev, curr, j, a[10];

prev := 0;

curr := 1;

for j := 1 step 1 to 10 do

begin

curr := curr + prev;

prev := curr - prev;

a[j] := curr;

end

end

30

CS133 Course Notes Lecture 24, Slide 30

1950-60’s

At this point, computers were large, standalone
devices owned by corporations and universities.

They used punched cards and paper printouts, or
“dumb” terminals displaying lines of monospaced
font like this.

“I think there is a world market for maybe 5 computers.” IBM Chair,
Thomas Watson.

“Computers in the future may have only 1000 vacuum tubes and
perhaps weigh only 1½ tons.” Popular Mechanics, 1949

Networks, personal computers and graphical displays
changed all that.

31

CS133 Course Notes Lecture 24, Slide 31

1969: ARPAnet

• Network connecting computers separated
geographically (with dedicated phone
lines)

• 1972: e-mail, syntax userid@machine

• 1974-7: other networks (Tymnet, UUnet)

• 1979: Usenet (newsgroups)

• 1982: Internet Protocol (IP)

32

CS133 Course Notes Lecture 24, Slide 32

1975: Altair

• Microprocessor kit for
under $500

• 256 bytes (!) memory

• No keyboard, no
monitor, no storage
device

• BASIC compiler
developed by Bill
Gates and Paul Allen

33

CS133 Course Notes Lecture 24, Slide 33

Personal Computers

• 1976: Apple I board

• 1977: complete machines
(Apple II, Commodore
PET, Radio Shack TRS-
80)

• 1981: IBM PC (with DOS
supplied by Microsoft)

“640K ought to be enough

for anybody.” Bill Gates,

1981.

Steve Jobs and Steve Wozniak
with Apple I (all of it)

34

CS133 Course Notes Lecture 24, Slide 34

Windows and Mice

• 1968: Doug Englebart’s
mouse (Stanford
Research Institute)

• 1972: Xerox Alto
(windowing system with
mouse)

• 1984: Apple Macintosh
(first commercially
successful system based
on graphical user
interface)

35

CS133 Course Notes Lecture 24, Slide 35

1989: The World-Wide

Web
• Developed by Tim Berners-Lee

at CERN as means of

information exchange among

scientists

• Ideas from Vannevar Bush (1945), Ted
Nelson (1965), Doug Englebart

• 1993: NCSA Mosaic graphical browser
developed

36

CS133 Course Notes Lecture 24, Slide 36

Development of Java

• 1991, Sun Microsystems: “The Green
Project” – formed to determine the next
wave of computing

– “Digitally controlled consumer

devices and computers”

• Group focused on designing tools for the
new field of interactive TV

– That didn’t quite work as hoped, but …

37

CS133 Course Notes Lecture 24, Slide 37

Development of Java,

continued

• SUN realized the supporting language had
larger applications

à the World Wide Web (and more!)

• 1995: Netscape licensed it for its browser

• 1995: SUN released it to the public

à Java (formerly OAK)

à Primary designer:

James Gosling (of Calgary)

38

CS133 Course Notes Lecture 24, Slide 38

What’s next?

• Molecular computing

• Biological computing

• Quantum computing

• Nanotechnology

• Ubiquitous computing

• …?

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

