
1

CS133: Developing

Programming Principles

Lecture 16
Types, more method resolution,

casting

2

Recall from last day

Person

Student

CoopStudent

Object

CS 133 Course Notes Lecture 16, Slide 2

3

Types

• An object of a derived class is also an
object of any ancestor class.

Person

Student

CoopStudent

CoopStudent marcus = new
CoopStudent("Marcus",4321);

marcus is a CoopStudent object
marcus is a Student object

marcus is a Person object

CS 133 Course Notes Lecture 16, Slide 3

4

Method resolution rules

Student kael =

new CoopStudent("Kael", 4444);

The reference (or static) type is Student

The object (or dynamic) type is CoopStudent

The Rules: ● The reference type determines whether a method

can be called. ● The object type determines which class's

implementation of the method is called.

CS 133 Course Notes Lecture 16, Slide 4

5

Types and method resolution

• Suppose we do the following:

Student kael = new

CoopStudent("Kael", 4444);

• Remember that CoopStudent s are Student s

• What value is returned by kael.calcFees() ?

• Answer: ________________

CS 133 Course Notes Lecture 16, Slide 5

6

Using method resolution

• Suppose we wish to keep track of all (4)
UWaterloo students.

• Some may be coop, others would be “just”
students.

• We would like to determine to total of all
the fees for all these students.

CS 133 Course Notes Lecture 16, Slide 6

7

Using method resolution

(continued)
// array declaration and allocation

// fill array

// (Kael, Mike are in coop, Chantelle, Marcus are n ot)

// determine totalFees

CS 133 Course Notes Lecture 16, Slide 7

8

Types and method resolution

(continued)
• What about the CoopStudent method

setWorkTerm , as in

kael.setWorkTerm(true);

• Answer: _________________

• Why?

CS 133 Course Notes Lecture 16, Slide 8

9

How to set the workterm?

• We need to tell Java to treat kael like a
CoopStudent , not just a Student

• So, we can say:

CS 133 Course Notes Lecture 16, Slide 9

10

Casting

• The same idea can be applied to numbers:

double mass = 3.00;
int massValue = mass;

Instead, we should say:

Question: What if mass = 3.67 above?

CS 133 Course Notes Lecture 16, Slide 10

11

Another inheritance example

• Recall the Coordinate class:
public class Coordinate
{ private int row;

private int col;

public Coordinate(int theRow, int theCol)
{ this.row = theRow;

this.col = theCol;
}
public int getRow()
{ return this.row;
}
public int getCol()
{ return this.col;
}

}

CS 133 Course Notes Lecture 16, Slide 11

12

Augmenting Coordinate

• We could add some methods to Coordinate :

public double distance(Coordinate other)
{ int xDiff = this.col – other.col;

int yDiff = this.row – other.row;
int sqDist = xDiff * xDiff + yDiff * yDiff;
return Math.sqrt(sqDist);

}
public String toString()
{ String s = "(" + this.row + "," + this.col + ")";

return s;
}
public boolean equals(Coordinate other)
{ return (this.row == other.row) &&

(this.col == other.col);
}

CS 133 Course Notes Lecture 16, Slide 12

13

Extending the Coordinate class to

include a colour
import java.awt.Color;

public class ColourCoordinate extends Coordinate
{ private static final Color DEFAULT_COLOUR =

Color.BLACK;
private Color colour;
public ColourCoordinate(int row, int col,

Color aColour)
{ super(row, col);

this.colour = aColour;
}
public ColourCoordinate(int rows, int cols)
{ this(row, col, DEFAULT_COLOUR);
}

CS 133 Course Notes Lecture 16, Slide 13

14

ColourCoordinate class

continued
public Color getColour()
{

return this.colour;
}

public void setColour(Color aColour)
{

this.colour = aColour;
}

public String toString()
{

}

CS 133 Course Notes Lecture 16, Slide 14

15

ColourCoordinate class

continued

public boolean sameColour(
ColourCoordinate other)

{
return this.colour.equals(other.colour);

}

public boolean equals(ColourCoordinate other)
{

}
} // end class

CS 133 Course Notes Lecture 16, Slide 15

16

Using the ColourCoordinate
class: Valid or Invalid
Coordinate coord0 = new Coordinate(5, 4);

ColourCoordinate colour0 = new

ColourCoordinate(0, 10, Color.RED);

Coordinate coord1 = colour0; ______________

ColourCoordinate colour1 = coord0; ________

Object obj1 = colour0; _____________

Object obj2 = coord0; _____________

System.out.println(coord1.toString()); _____

System.out.println(colour0.toString()); ____

CS 133 Course Notes Lecture 16, Slide 16

17

Using the ColourCoordinate
class continued

ColourCoordinate colour2 = new
ColourCoordinate(7, 6, Color.BLUE);

if (colour2.sameColour(colour0)) … _________
if (colour2.sameColour(coord0)) … __________

double d1 = coord1.distance(coord0); _______
double d2 = coord1.distance(colour0); ______

double d3 = colour0.distance(coord1); ______
double d4 = colour0.distance(colour2); _____

CS 133 Course Notes Lecture 16, Slide 17

18

Summary

• Role of this and super in a derived
(extended) class

• Resolving method calls

• Casting

CS 133 Course Notes Lecture 16, Slide 18

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

