
1

CS133: Developing

Programming Principles

Lecture 18
Text Files

2

CS 133 Course Notes Lecture 18, Slide 2

Not the Book’s Approach

We’re doing things a little differently than
the approach in the text.

3

CS 133 Course Notes Lecture 18, Slide 3

Text files

A text file contains a number of lines, each

consisting of a sequence of characters.

To: Carrie
From: Charlie
The quick brown
fox jumped over
the lazy dog.

4

CS 133 Course Notes Lecture 18, Slide 4

Reading a Text File

1. Open the file, using a name known to the
operating system:
C:\My Stuff\CS133\Junk\test.txt
/u/charlie/Courses/CS133/test.txt

2. Read and process each line of text.

3. Close the file.

5

CS 133 Course Notes Lecture 18, Slide 5

Opening the File

import java.io.*;

import java.util.*;

FileReader in

= new FileReader(filename);

Scanner myScanner

= new Scanner(in);

6

CS 133 Course Notes Lecture 18, Slide 6

Class FileReader

FileReader is a subclass of
InputStream and can be used to create
a Scanner.

FileReader in

= new FileReader("C:\\test.txt");

Throws FileNotFoundException if the
file does not exist or can’t be opened.

7

CS 133 Course Notes Lecture 18, Slide 7

Reading and Printing a File

try {
FileReader in

= new FileReader("C:\\test.txt");
Scanner scanner = new Scanner(in);
while (scanner.hasNext()) {

System.out.println(scanner.nextLine());
}
scanner.close();

} catch (FileNotFoundException e) {
System.exit(0);

}

8

CS 133 Course Notes Lecture 18, Slide 8

Scanner Class

All methods of the Scanner class may

be used to read from the file.

public boolean hasNext()

The hasNext() method may be used to

determine when the end of the file is

reached.

9

CS 133 Course Notes Lecture 18, Slide 9

Counting Lines of Code

A commonly used software engineering
metric is “lines of code”.

Is this a good way of measuring

programmer productivity? Is it a good way

of estimating effort?

How many lines did you write today?

10

CS 133 Course Notes Lecture 18, Slide 10

Counting the number of lines

in a Java file

int lines = 0;
try {

FileReader in
= new FileReader("C:\\X.java");

Scanner scanner = new Scanner(in);
while (scanner.hasNext()) {

scanner.nextLine();
lines++;

}
scanner.close();

} catch (FileNotFoundException e) {
}

11

CS 133 Course Notes Lecture 18, Slide 11

Writing a Text File

1. Create and open the file, using a name
known to the operating system:
C:\My Stuff\CS133\Junk\test.txt
/u/charlie/Courses/CS133/test.txt

2. Generate and write each line of text.

3. Close the file.

12

CS 133 Course Notes Lecture 18, Slide 12

Creating/Opening the File

import java.io.*;

FileWriter out

= new FileWriter(filename);

PrintWriter writer

= new PrintWriter(out);

13

CS 133 Course Notes Lecture 18, Slide 13

Class FileWriter

Creates and opens an empty file for

writing. If the file exists, it’s overwritten.

FileWriter throws an IOException
if the file can’t be created for writing.

14

CS 133 Course Notes Lecture 18, Slide 14

Class PrintWriter

PrintWriter supports all the

print() and println()

methods supported by System.out.

(Although System.out is not itself a

PrintWriter.)

15

CS 133 Course Notes Lecture 18, Slide 15

Example

Write a class to maintain information about a

user between executions of a program (e.g.,
name and age).

Store the information before exit.

Restore the information at the start of execution.

16

CS 133 Course Notes Lecture 18, Slide 16

Example

import java.util.*;
import java.io.*;
public class User {

private String name;
private int age;

public User() {
this.name = ""; this.age = 0;

}

public User(String name, int age) {
this.name = name; this.age = age;

}

17

CS 133 Course Notes Lecture 18, Slide 17

Example

public void setName(String name) {
this.name = name;

}

public void setAge(int age) {
this.age = age;

}

public String getName() { return name;}

public int getAge() { return age;}

18

CS 133 Course Notes Lecture 18, Slide 18

Example – save method
public boolean save(String fileName) {
PrintWriter writer;
try {

FileWriter out = new FileWriter(fileName);
writer = new PrintWriter(out);

} catch (IOException e) {
return false;

}
writer.println(name);
writer.println(age);
writer.close();
return true;
}

19

CS 133 Course Notes Lecture 18, Slide 19

Example – restore
method

public boolean restore(String fileName) {
Scanner scanner;
try {

FileReader in = new FileReader(fileName);
scanner = new Scanner(in);

} catch (FileNotFoundException e) {
return false;

}
name = scanner.nextLine();
age = scanner.nextInt();
scanner.close();
return true;
}

20

CS 133 Course Notes Lecture 18, Slide 20

Example - Saving

String fileName = "C:\\userInfo.txt";

User user = new User("Sidney Crosby",
18);

user.save(fileName);

21

CS 133 Course Notes Lecture 18, Slide 21

Example – File Contents

Sidney Crosby
18

C:\userInfo.txt

22

CS 133 Course Notes Lecture 18, Slide 22

Example - Restoring

String fileName = "C:\\userInfo.txt";

User user = new User();

user.restore(fileName);

23

CS 133 Course Notes Lecture 18, Slide 23

Appending to a Text File

To add text to an existing file a different
FileWriter constructor must be used:

public FileWriter(String fileName,

boolean append);

If append is true, text will be written to
the end of the file.

24

CS 133 Course Notes Lecture 18, Slide 24

Summary

– Reading from text files.

– Writing to text files.

– Appending to text files.

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

