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Hierarchies

• Information may be organized in a non-
linear manner.

• Hierarchies represent dependencies or 
relationships in a non-linear, tree-like 

structure.

• Examples:

– People/Students/Co-op students

– Classification of matter
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Example

Person

InstructorStudent

Co-op Student Grad Student
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Another example

Matter

Pure substancesMixtures

Heterogeneous Homogeneous Compounds Elements
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Observations

• Notice that the root of the hierarchy is the 
most general (Person, Matter)

• As we move down through the tree, we 
become more specific

– The attributes become increasingly well-

defined.

– Example: Co-op Student is more specific than 
Student, which is more specific than Person.
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Observations continued

• Attributes are passed down the tree

– Example: if person has an address, then 

students will also have an address.

• The CS/Java/O-O hierarchies will 

guarantee the above point

– In “real life”, not all attributes are inherited
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How does this relate to CS?

• We will treat these classes of things as 
objects, and relate them together using 

INHERITANCE
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Person

• Suppose we know that all people have a 
name and an address.

• We can do the following to the name and 

address:

– Set

– Compare

– Retrieve
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The Person class

public class Person
{ private String name;

private String address;

public Person(String newName)
{    this.name = newName;

this.address = "";
}

public Person(String newName, 

String newAddress)
{    this.name = newName;

this.address = newAddress;
}
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The Person class

public String getName()
{    return this.name;

}

public void setName(String newName)

{    this.name = newName;

}

public boolean sameName(Person other)

{    return

this.name.equalsIgnoreCase(
other.name); 

}

// Also getAddress and setAddress and 

// sameAddress
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Person as Superclass

• Person is called the superclass (or base 
class or parent class).

• This is the most general class.

• From this class, subclasses (or derived 
classes or child classes) can inherit 
properties (e.g., methods and attributes) 
from the super class.
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Person continued

• Using the University hierarchy again, we 
will create a subclass of Person called 
Student .

• Students are people, except they have a 

student id, take courses and, of course, 
pay fees.
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public class Student extends Person

{ private int studentID;

private String[] courses = new String[6];

private int numCourses = 0;

private static final double PER_COURSE_FEE = 256.74;

public Student(String newName, int sID)  

{ super(newName);

this.studentID = sID;

}

public Student(String newName, String newAddress, 

int sID)  

{ super(newName, newAddress);

this.studentID = sID;

}

The Student class

Indicates this is a 
subclass of Person

Call the constructor 
of the super class

Call the second 
constructor of the 
super class
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public boolean equals(Student other)
{ 

return this.studentID == other.studentID &&
this.sameName(other) &&
this.sameAddress(other);

}

public String getStudentID()  
{

return this.studentID;
}

public double calcFees()  
{

return this.numCourses*PER_COURSE_FEE;
}

The Student class continued
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Student class continued
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super(Arguments)

• Calls the constructor of the immediate 
superclass if there is one that can accept 
the arguments.

• Must be first statement in constructor

• Otherwise, super() is inserted automatically

• Otherwise, there is a compile-time error.

• Here, Person 's constructors are called.
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Student class continued

• A Student object will have a name, as 
well as the getName and setName 
methods even though they aren’t explicitly 
defined in the class.

• Inherits them from the Person class.

• Notice that a Student object has access 
to the instance variables of other Student
objects (e.g., for equals ).
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Example

> Student troy = new Student("Troy", 20000001);
> Student sandy = new Student("Sandy", "200 King St", 9 9);
> System.out.println(troy.getName());

___________________
> System.out.println(troy.calcFees());

___________________
> troy.setName("Troy Vasiga");
> System.out.println(troy.sameName(sandy));

___________________
> sandy.addCourse("CS 000");
> System.out.println(sandy.calcFees());

___________________
> sandy.getStudentID();

____________________
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Overriding methods

• Sometimes when we specialize (i.e., 
create subclasses), we may want to 
restrict or modify the methods of the 
parent class for this particular subclass.

• So we may override a method in a 
subclass using the same signature as the 
super class method, but replacing the 
body of the method.
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Co-op Student 

• Suppose we extend the Student class to 
a subclass Co-op student.

– Co-op students may be on a work term, or on-

campus

– Co-op students pay an additional Co-op fee
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The CoopStudent class

public class CoopStudent extends Student
{ private boolean isOnWorkTerm = false;

private static final double COOP_FEE = 317.69;

public CoopStudent(String newName, int sID)  
{ super(newName, sID);
}    
public CoopStudent(String newName, String newAddress,

int sID)
{ super(newName, newAddress, sID);
}

public double calcFees()
{ return super.calcFees() + COOP_FEE;
}

Override 
calcFees
from
Student 
class
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The CoopStudent class

public void setWorkTerm(boolean status)

{  this.isOnWorkTerm = status;

}

public String location()

{ if (isOnWorkTerm) { 

return this.getName() +

" is on a work term.";

} else {

return this.getName()+

" is on campus.";

}

}

}
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Example: CoopStudent

> CoopStudent chantelle = new CoopStudent("Chantelle",   

5555555);

> System.out.println(chantelle.getName());

___________________

> chantelle.onWorkTerm(true);

> System.out.println(chantelle.calcFees());

___________________

> chantelle.addCourse("ECE 476");

> chantelle.onWorkTerm(false);

> System.out.println(chantelle.calcFees());

___________________

> System.out.println(chantelle.location());
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Terminology

• A base class is also known as a parent 
class or the superclass.

• A derived class is also known as a child 
class or the subclass.

• An ancestor class is a class that is a 
parent or parent of a parent (etc.).

• If class A is an ancestor of class B, then 
class B is a descendant class of class A.
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Terminology

• X is a Y 

means class X extends Y (or extends an 
earlier extension of Y).

• X has a Y 

means class X has an instance variable of 
type Y.
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Definitions

• Overriding is when a method with the same 
signature as in a superclass is written in a 
subclass.
– Example: CoopStudent 's calcFees overrides 

Student 's calcFees

• Overloading is when there are at least two 
different methods with the same name and 

return type, but with different types or numbers 
of parameters.

– Example: constructor in Student is overloaded
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Summary

• Inheritance

• Superclass, subclass

• Hierarchy

• super(…)

• Overriding methods
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