Assignment: 1
Due: Tuesday, January 10, 2017 9:00 pm
Language level: Beginning Student
Files to submit: functions.rkt, conversion.rkt, grades.rkt, participation.rkt
Warmup exercises: HtDP 2.4.1, 2.4.2, 2.4.3, and 2.4.4
Practise exercises: HtDP 3.3.2, 3.3.3, and 3.3.4

Assignment Policies

• No assignments will be accepted beyond the submission date and time. No exceptions.
• For this and all subsequent assignments, the work you submit must be entirely your own.
• Do not look up either full or partial solutions on the Internet or in printed sources.
• Make sure to follow the style and submission guide available on the course Web page when preparing your submissions. Please read the course Web page for more information on assignment policies and how to submit your work.
• For this assignment only, you do not need to include the design recipe in your solutions. A well-written function definition is sufficient.

Grading

• This assignment (or any later one) will not be graded and no marks will be recorded until you have first received full marks in Assignment 0.
• Completing A0 after the A1 deadline will result in a mark of 0 on Assignment 1.
• Your solutions for assignments will be graded on both correctness and on readability.

Correctness

• Be sure to check your basic test results after each submission! MarkUs will display your basic test results shortly after you make a submission.
• If you do not get full marks on the basic tests, then your submission will not be markable by our automated tools, and you will receive a low mark (probably 0) for the correctness portion of the corresponding assignment question.
• On the other hand, getting full marks on the basic tests does not guarantee full correctness marks. It only means that you spelled the name of the function correctly and passed some extremely trivial tests.
• Thoroughly testing your programs is part of what we expect of you on each assignment.
Readability

- You should use constants where appropriate.
- All identifiers should have meaningful names, unless specifically stated otherwise such as in question 1.

Here are the assignment questions you need to submit.

1. **Translate** the following function definitions into Racket, using the names given in the formulae. Place your solutions in the file `functions.rkt`.

 Note that when you are asked to **translate** a function, it should be a direct translation. When asked to translate \((a + b)\) the translation is \((+ a b)\), not \((+ b a)\). When translating \(x^2\), either \((sqr x)\) or \((\ast x x)\) is acceptable.

 (a) The formula from statistics \((\text{recall})\) :

 \[
 \text{recall}(tp, fn) = \frac{tp}{tp + fn}
 \]

 (b) The formula from physics \((\text{BallisticMotions})\) :

 \[
 \text{height}(v, t) = v \times t - 0.5 \times g \times t^2
 \]

 where \(g=9.8\)

 (c) The formula from analysis \((\text{Stirling’s approximation})\) :

 \[
 \text{stirling}(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n
 \]

 (Hint: review the difference between the built-in Racket functions \(\text{exp}\) and \(\text{expt}\))

 Use the built-in Racket constants for \(\pi\) and \(e\).

 (d) The formula from statistics \((\text{logit})\) :

 \[
 \text{logit}(p) = \log\frac{p}{1 - p}
 \]

 (Hint: Use the built-in Racket function \(\log\).)
2. In this question, you will write functions to convert between units. Place your solutions in the file `conversion.rkt`. You should use meaningful constant names. Do not perform any “rounding”.

(a) Write a function \(f \rightarrow c \) which consumes a temperature in Fahrenheit and produces the same temperature in Celsius. It may be helpful to know that

\[
C = (F - 32) \times \frac{5}{9}
\]

(Remember that in your function name, \(\rightarrow \) is typed as \(->\).

(b) Write a function \(c \rightarrow f \) which consumes a temperature in Celsius and produces the same temperature in Fahrenheit.

(c) Given that 1 kilograms = 35.2 ounces = 2.2 pounds. Write a function \(ounces \rightarrow pounds \) that consumes a weight in ounces and produces the same weight in pounds.
3. The end of the Fall term has come, and you decide to use Racket to calculate your grade going in to the CS 135 final. For this question, you do not need to worry about the course requirements of passing the exam and assignment components of the course separately.

(a) Write a function \textit{cs135-grade-sofar} that consumes three numbers (in the following order):

- the midterm grade,
- the participation grade, and
- the overall assignments grade.

This function should produce the weighted grade in the course (as a percentage, but not necessarily an integer) going in to the final exam. For example, \((\text{cs135-grade-sofar} 100 100 100)\) would produce 100. You may need to review the mark allocation in the course. You can assume that all grades are percentages and are given as numbers between 0 and 100, inclusive.

(b) The end of exams has now come, and you have received your final grade in the course. Write a function \textit{cs135-final-exam} that consumes two numbers. The first number is the weighted grade going in to the final exam (as calculated above). The second number is the final grade received in the course. This function should calculate the grade received on the final exam.

(c) The CS135 instructor decided to bell-curving the final grade for each student by multiplying it with 1.02 while not exceeding 100. Write a function \textit{cs135-final-grade} that consumes a final grade and produces the bell-curved grade. For example, \((\text{cs135-final-grade} 99)\) would produce 100, and \((\text{cs135-final-grade} 80)\) would produce 81.6.

Place your solutions in the file \textit{grades.rkt}.
4. **2% Bonus**: In CS 135, your class participation grade (from clickers) is calculated in the following manner:

- Each question is worth two marks.
- You receive two marks for a correct answer, and one mark for an incorrect answer.
- You receive zero marks if you do not answer.
- To account for imperfect attendance, forgotten clickers, dead batteries etc., only your best 75% of the questions are used to calculate your grade.

Write a function `cs135-participation` that consumes three parameters (in order):

- the total number of clicker questions asked in the year,
- the number of questions you answered correctly, and
- the number of questions you answered incorrectly.

Your function must produce your class participation grade as a percentage. For convenience, you may assume the total number of questions is a positive Integer divisible by four. For example, `(cs135-participation 100 72 22)` would produce 98.

Note: you may only use the features of Racket given up to the end of Module 1. You may use `define` and `mathematical` functions, but not `cond`, `if`, lists, recursion, Booleans, or other things we’ll get to later in the course. Specifically, you may use any of the functions in section 1.5 of this page: http://docs.racket-lang.org/htdp-langs/beginner.html

Place your solution in the file `participation.rkt`. Note that bonus questions are typically “all or nothing”. Incorrect or very poorly designed solutions may not be awarded any marks.

This concludes the list of questions for you to submit solutions. Don’t forget to always check the basic test results after making a submission.
Challenges and Enhancements

The teaching languages provide a restricted set of functions and special forms. There are times in these challenges when it would be nice to use built-in functions not provided by the teaching languages. We may be able to provide a teachpack with such functions. Or you can set the language level to “Pretty Big”, which provides all of standard Racket, plus the special teaching language definitions, plus a large number of extensions designed for very advanced work. What you lose in doing this are the features of the teaching languages that support beginners, namely easier-to-understand error messages and features such as the Stepper.

This enhancement will discuss exact and inexact numbers.

DrRacket will try its best to work exclusively with exact numbers. These are rational numbers; i.e. those that can be written as a fraction a/b with a and b integers. If a DrRacket function produces an exact number as an answer, then you know the answer is exactly right. (Hence the name.)

DrRacket has a number of different ways to express exact numbers. 152 is an exact number, of course, because it is an integer. Terminating decimals like 1.60934 from question 2 above are exact numbers. (How could you determine a rational form a/b of this number?) You can also type a fraction directly into DrRacket; 152/17 is an exact number. Scientific notation is another way to enter exact numbers; 2.43e7 means $2.43 \times 10^7 = 24300000$ and is also an exact number.

It is important to note that adding, subtracting, multiplying, or dividing two exact numbers always gives an exact number as an answer. (Unless you’re dividing by 0, of course; what happens then?) Many students, when doing problems like question 2, think that once they divide by a number like 1.60934, they no longer have an exact answer, perhaps because their calculators don’t treat it as exact.

But try it in DrRacket: (/ 2 1.60934). DrRacket seems to output a number with lots of decimal places, and then a “...” to indicate that it goes on. But right-click on the number, and a menu will allow you to change how this (exact) number is displayed. Try out the different options, and you’ll see that the answer is actually the exact number 100000/80467.

You should use exact numbers whenever possible. However, sometimes an answer cannot be expressed as an exact number, and then inexact numbers must be used. This often happens when a computation involves square roots, trigonometry, or logarithms. The results of those functions are often not rational numbers at all, and so exact numbers cannot be used to represent them. An inexact number is indicated by a #i before the number. So #i10.0 is an inexact number that says that the correct answer is probably somewhere around 10.0.

Try (sqr (sqrt 15)). You would expect the answer to just be 15, but it’s not. Why? (sqrt 15) isn’t rational, so it has to be represented as an inexact number, and the answer is only approximately correct. When you square that approximate answer, you get a value that’s only approximately 15, but not exactly.

You might say, “but it’s close enough, right?” Not always. Try this:
(define (addsub x)
 (− (+ 1 x) x))

This function computes \((1 + x) - x\), so you would expect it to always produce 1, right? Try it on some exact numbers:

(addsub 1)
(addsub 12/7)
(addsub 253.7e50)

With exact numbers, you always get 1, as expected. What about with inexact numbers?

(addsub (sqrt 15)) => #i1.0, which is fine. (addsub (sqrt 2)) => #i0.9999999999999998, which is close to 1; that’s more or less what we expect from inexact numbers. But (addsub (exp 40)) => #i0.0. That answer is very different from 1! Can you find inputs which give different answers from these?

If you go on to take further CS courses like CS 251 or CS 371, you’ll learn all about why inexact numbers can be tricky to use correctly. That’s why in this course, we’ll stick with exact numbers wherever possible.