Assignment: 8
Due: Tuesday, November 21, 9:00pm
Language level: Intermediate Student with Lambda
Allowed recursion: None (see notes below)
Files to submit: intro.rkt, nestlist.rkt, suggest.rkt, omit.rkt
Warmup exercises: HtDP (Without using explicit recursion: 9.5.2, 9.5.4), 19.1.5, 20.1.1, 20.1.2, 24.0.7, 24.0.8
Practice exercises: HtDP 19.1.6, 20.1.3, 20.2.4, 21.2.3, 24.0.9

• Make sure you read the OFFICIAL A8 post on Piazza for the answers to frequently asked questions.

• The Piazza post will also contain a list of the allowed Abstract List Functions (and other built-in functions).

• You may not write explicitly recursive functions; that is, functions that involve an application of themselves, either directly or via mutual recursion, unless specifically permitted in the question.

• In this assignment your Code Complexity/Quality grade will be determined both by how clear your approach to solving the problem is, and how effectively you use Abstract List Functions and local constants/functions. You should include local definitions to avoid repetition of common subexpressions, to improve readability of expressions and to improve efficiency of code.

• You may reuse the provided examples, but you should ensure you have an appropriate number of examples and tests. When working with Abstract list Functions, an appropriate number of tests is often quite small (exhaustive testing is usually not necessary). For most functions, a few examples are usually sufficient.

• Your solutions must be entirely your own work.

• Solutions will be marked for both correctness and good style as outlined in the Style Guide.
Here are the assignment questions you need to submit.

1. Perform the assignment 8 questions using the online evaluation “Stepping Problems” tool linked to the course web page and available at

 The instructions are the same as those in assignment 3; check there for more information if necessary.

2. For this introductory question, you are to implement some straightforward functions using Abstract List Functions (ALFs). Place your solution in the file intro.rkt.

 REMARKER: As mentioned in the preambles, except as noted in questions 3(a) and 4(b) you may not write explicitly recursive functions. You must use abstract list functions.

 (a) Write keep-ints from Assignment 04.

 (b) Write contains? from Assignment 04 (for this part, you are not allowed to use member? or member).

 (c) Write lookup-al from Section 06 Slide 57 (you are not allowed to use assoc or assq).

 (d) Write a function extract-keys which consumes an Association List (AL) and produces a list of all of the keys in the association list (in the same order they appear in the AL).

 (e) Write sum-positive from Assignment 04.

 (f) Write countup-to from Section 06 Slide 23 (hint: use build-list) (for this part you are not allowed to use range).

 (g) Write a function shout that consumes a list of strings and produces the same list of strings, but in all UPPERCASE. You must use the built-in function char-upcase to do the conversion.

 \[
 \text{shout '"get" "off" "my" "lawn") => '"GET" "OFF" "MY" "LAWN"}
 \]

 (h) Write a function make-validator that consumes a (listof Any) and produces a predicate function (similar to the way that make-adder produces a function in Section 10). The produced function consumes a single item of type Any and produces a Boolean that determines if the item appears in the list that was consumed by make-validator.

 \[
 \text{(define primary-colour? (make-validator '(red blue green)))}
 \]

 \[
 \text{(primary-colour? 'red) => true}
 \]
3. On Slide 76 of Section 08 we introduced the idea of **nested lists** (with arbitrary nesting). In this question we explore functions that abstract recursive behaviour on nested lists. In other words, we wish to write a higher-ordered function that generalizes the behaviour of functions such as `count-items` on Slide 82 and `flatten` on Slide 85. Also note the data definition of a `Nest-List-X` provided on Slide 80 and the corresponding template function on Slide 81 (you do not have to include them in your assignment). All of these slides will help guide your approach. However, note that instead of using the unknown predicate function `X?` as it appears on Slide 81 (or `number?` on Slides 82 & 85), it is much easier to switch the order of the two non-base cases and use the built-in function `list?` function to determine if the first element is a list. This allows us to write the function without knowing the type of `X`. Place your solution in the file `nestlist.rkt`. You do not have to provide a data definition for `Nest-List-X`.

(a) Write a nested version of `foldr` named `nfoldr` that behaves very similar to `foldr`, except it consumes two “combine” functions instead of one. The first function is applied when the first element in the list is of type `X`, and the second is applied when the first element is a `list`. The third parameter is the base case and the fourth parameter is the nested list. The contract for `nfoldr` is as follows:

```racket
;;; nfoldr: (X Y -> Y) (Y Y -> Y) Y Nested-Listof-X -> Y
```

The functions `count-items` and `flatten` (from Slides 82 & 85) can be implemented using `nfoldr` as follows:

```racket
(define (count-items nln) (nfoldr (lambda (x y) (add1 y)) + 0 nln))

(count-items '(1 (2 3) () ())) => 4

(define (flatten lst) (nfoldr cons append empty lst))

(flatten '(1 (2 3) () ())) => '(1 2 3 4)
```

To help further illustrate how `nfoldr` works, consider the following applications:

```racket
(nfoldr f g b '()) => b

(nfoldr f g b '(1 2 3)) => (f 1 (f 2 (f 3 b)))

(nfoldr f g b '(1 (2 3) 4)) => (f 1 (g (f 2 (f 3 b)) (f 4 b)))

(nfoldr f g b '(1 (2 3) () (4))))
=> (f 1 (g (f 2 (f 3 b)) (g b (g (g (f 4 b) b) b))))
```

You may use explicit recursion (pure structural) to define your `nfoldr` function. However, as stated at the start of this assignment, **all** of the remaining functions in this question must not use explicit recursion. Instead, they must be implemented by using your `nfoldr` function.
(b) Write the \texttt{nfilter} function.

\begin{verbatim}
;; nfilter: (X -> Bool) Nested-Listof-X -> Nested-Listof-X
(nfilter odd? '(1 (2 3) () ((4)))) => '(1 (3) () ())
\end{verbatim}

(c) Write the \texttt{nmap} function.

\begin{verbatim}
;; nmap: (X -> Y) Nested-Listof-X -> Nested-Listof-Y
(nmap sqr '(1 (2 3) () ((4)))) => '(1 (4 9) () ((16)))
\end{verbatim}

(d) Write the \texttt{nreverse} function, which reverses every nested list. (note: you may not use \texttt{reverse} to solve this problem, but \texttt{append} will likely be necessary). We have shown how the nested list from Slide 77 in the notes would be reversed:

\begin{verbatim}
(nreverse '(1 (2 3) () ((4)))) => '(((4)) () (3 2) 1)
(nreverse '(((1 a) (2 b) (3 c))) => '(((4)) () (3 2) 1))
\end{verbatim}

\texttt{Slide 77}

(e) Write the \texttt{nheight} function, which determines the height of a nested list. The height of a regular (non-nested) list is 1, regardless if it is empty or not. A list that contains lists (such as a simple association list) would have a height of 2. The height corresponds to the maximum number of lists that have been nested. The nested list on Slide 77 (also shown above) has a height of 3.

\begin{verbatim}
(nheight '()) => 1
(nheight '(a b c)) => 1
(nheight '(((1 a) (2 b) (3 c)))) => 2
(nheight '(1 (2 3) () ((4)))) => 3
(nheight '(((1 (2 3)) 4 (5 (6 7 8) 9))) => 3 ;; Slide 77
\end{verbatim}

\texttt{Slide 77}

(f) On Slide 77, we show how leaf-labelled trees can be represented by nested lists. While every leaf-labelled tree is a nested list, not every nested list is a leaf-labelled tree. For example, the nested list '((((1 (2 3) () ((4))))) contains an empty list, which is a “leaf” with no label. Furthermore, when \texttt{nfilter} is applied to a leaf-labelled tree, the result may no longer be a leaf-labelled tree. Write the \texttt{prune} function which removes all empty lists and any nested lists that only contain empty lists (i.e., they do not contain any elements of type \texttt{X}). Note that if there are no elements of type \texttt{X}, \texttt{prune} produces empty.

\begin{verbatim}
(prune '(((1 2 3)) () ((4) ()())()) => '(1 (2 3) ((4))))
(prune '((())())()) => ()
\end{verbatim}

\texttt{Slide 77}
4. You are probably familiar with “spell checkers” that not only find misspelled words, but also suggest correctly spelled words. In this question, we will develop a function that suggests words. We use the following data definition of a Word:

```scheme
;; A Word is a Str
;; requires: only lowercase letters appear in the word
;; (no spaces, punctuation, etc.)
```

We have provided you with the file `suggest.rkt`. This file contains a partial solution that you may build upon. We strongly recommend you begin with this file, but if you want an extra challenge you may ignore this file and develop your solution independently.

(a) Write the function `remove-dups` that consumes a list of Words that are sorted in non-decreasing order. `remove-dups` removes any duplicate Words so that each Word in the produced list is unique (maintaining the original order).

```scheme
(remove-dups '("apple" "apple" "apples" "banana" "cherry" "cherry")
=> '("apple" "apples" "banana" "cherry")
```

(b) We desire a new higher-ordered function that abstracts lockstep recursion on both a list and a natural number (using a “countup” pattern). In other words, we wish to recurse on a list, but we also want to keep track of the index (or “position”) of the element we are processing. The very first element has an index of 0, the second has an index of 1, etc. Write an indexed version of `foldr` named `ifoldr` that behaves very similar to `foldr`, except that it uses a combine function that has an extra argument, corresponding to the current index of the element being processed. For comparison, consider the contracts and sample applications for both `foldr` and `ifoldr`:

```scheme
;; foldr: (X Y -> Y) Y (listof X) -> Y
;; (foldr f base (a b c)) => (f a (f b (f c base)))

;; ifoldr: (Nat X Y -> Y) Y (listof X) -> Y
;; (ifoldr g base (a b c)) => (g 0 a (g 1 b (g 2 c base)))
```

The following example shows how `ifoldr` can be used:

```scheme
(ifoldr (lambda (i x y) (cons (list i x) y)) empty '(a b c))
=> '((0 a) (1 b) (2 c))
```

You may use explicit recursion (pure structural) to define your `ifoldr` function. As a challenge you can write `ifoldr` using built-in Abstract List Functions, but you are not required to do so – make sure you review the allowed functions and their usage in the Piazza Post (FAQ).

(c) The `suggest` function consumes a Word and a predicate function for determining if a Word is spelled correctly. The function produces a list of correctly spelled words that are “close” to the consumed word (we define “close” shortly). The predicate function consumes a Word and produces a Boolean.
suggest: Word (Word -> Bool) -> (listof Word)

For example, consider the following application of suggest that consumes a function valid? that determines if a string appears in a list of strings.

(define (valid? s)
 (member? s '("rights" "right" "fight" "aardvark" "fhqwhgads" "bright")))

(suggest "right" valid?) => '("bright" "fight" "rights")

A few things to note from this example:
• suggest does not have access to a list of correctly spelled words. suggest is only provided a predicate function (e.g., valid?) that determines if a word is correctly spelled.
• Instead, suggest generates many possible words that are close to the word (more on that later) and then filters out any of the generated words that are not correctly spelled (according to the provided predicate function).
• In this example, suggest did not produce the word "aardvark" as it is not close to "right".
• In this example, suggest could not produce the word "light", because (valid? "light") produces false.
• The word list contained "fhqwhgads", which is not a correctly spelled word (it does not appear in most dictionaries). It doesn’t matter if a word is actually correctly spelled, only that the predicate function produces true (you may want to use misspelled words in your tests).
• It does not matter if the provided word is correctly spelled.

The list of words produced by suggest must be sorted in ascending order, may not contain any duplicates and must not contain the original word (if it is spelled correctly) or the empty string ("").

The suggest function generates every Word that has exactly one “change”, as defined by the list below. In other words, suggest generates all Words with an “Edit Distance” of one (including transpositions/swaps). If you wish, you can read more about Edit Distances online (but you are not required to do so).

For each change, we have shown what words would be generated for the word "jklm".
• single deletions: each letter removed from the word.
 "klm", "jlm", "jkm", "jkl"
• single insertions: every possible letter (a..z) inserted before each letter in the word.
 "ajklm", "bjklm", "cjklm", ... "zjklm", "jaklm", "jbklm", ...
 ... "jzklm", "jkalm", ... "jkzlm",
 "jkym", "jklz"m"
• trailing letter: every possible letter inserted at the end of the word.
 "jklma", "jklmb", "jklmc", ...
 "jklmz"
• **single substitutions:** each letter replaced with every possible letter.
 "aklm", "bklm", "cklm", ... "zklm", "jalm", "jblm", ...
 ... "jzlm", "jkam", ... "jkzm", "jkly", "jklz"

• **adjacent swaps (transpositions):** each adjacent pair of letters in the word swapped.
 "kjlm", "jklm", "jkml"

We have provided an implementation for the `suggest` function in the file `suggest.rkt`. It is complete, but it relies on `remove-dups` (see above) which you are required to write and five helper functions to generate each of the possible changes above: `remove-letters, insert-letters, trailing-letters, replace-letters, swap-letters`.

We have also implemented one of the five helper functions (`remove-letters`) for you as an example. You are required to write the remaining four. If you do not complete all four, you will receive partial marks for the functions you did complete.

To implement `remove-letters` we first wrote a helper function `remove-at` which removes an element with index `i` from a list. `remove-at` depends on the `ifoldr` function you are required to write (see above). `remove-letters` then uses `build-list` to remove each letter. It is strongly recommended that you understand `remove-at` and `remove-letters` before attempting the remaining helper functions. The two functions will also be reviewed at the Tutorial this week.

You are not required to use our implementation of `suggest` or any of the helper functions it relies on. We will only test your `remove-dups, ifoldr` and `suggest` functions.

You may want to generate multiple predicate functions (similar to `valid?`) that have different word lists. The `make-validator` function from Question 2 above will be helpful. A predicate function that always produces `true` such as `(lambda (s) true)` (that thinks that all words are spelled correctly) may also be helpful.

After the deadline for A07, we will provide a file `spellcheck.rkt` that contains a (modified) Trie with almost 40,000 english words and provides a `spellcheck?` function that searches that Trie. You may use that file (add `(require "spellcheck.rkt")` at the top of your file) for your own experiments (and to show off your program to your friends & family) but you should not leave the `require` in your submitted file or use that file for your examples and tests. You are not required to use the `spellcheck.rkt` file and if your computer struggles with the large Trie then it is best to simply avoid it.

5. **8% Bonus:** Place your solution in the file `omit.rkt`. You do not need to include the design recipe for any of these bonus questions. However, you must provide a sentence or two that briefly explains your approach and demonstrates that you understand your code and that you are submitting your own work.

(a) Write the Racket function `omit1`, which consumes a string and produces a list of all possible strings with all possible letters omitted. For example, `(omit1 "abc")` produces something like `(list "abc" "ab" "ac" "a" "bc" "b" "c" "")`. The order of strings in the list may vary, but for a string of length `n` it must produce exactly 2^n strings. If it helps,
you can assume the input string does not contain any duplicate characters. Write the
function any way you want. (Value: 1%)

(b) Now write the Racket function `omit2`, which behaves exactly like `omit1` but which
does not use any explicit recursion or helper functions. You must rely on abstract list
functions and `lambda` (and potentially standard list functions like `string->list`, `cons`,
`first`, `rest`, `append`, etc.). Your solution must not be more than three lines of code.
Note that if you solve this question, you can also use it as a solution to the previous
one—just have `omit1` apply `omit2`. (Value: 2%)

(c) For the ultimate challenge, write the Racket function `omit3`. Do not write any helper
functions, and do not use any explicit recursion (i.e., your function cannot call itself
by name). Do not use any abstract list functions. In fact, use only the following list of
Racket functions, constants and special forms: `string->list`, `list->string`, `cons`,
`first`, `rest`, `empty?`, `empty`, `lambda`, and `cond` (including `else`). You are permitted to
use `define` exactly once, to define the function itself. (Value: 5%)

This concludes the list of questions for which you need to submit solutions. Don’t forget to always
check your email for the public test results after making a submission.

Enhancements: Reminder—enhancements are for your interest and are not to be handed in.

Professor Temple does not trust the built-in functions in Racket. In fact, Professor Temple does not
trust constants, either. Here is the grammar for the programs Professor Temple trusts.

\[\langle \text{exp} \rangle = \langle \text{var} \rangle | (\lambda (\langle \text{var} \rangle) \langle \text{exp} \rangle) | (\langle \text{exp} \rangle \langle \text{exp} \rangle) \]

Although Professor Temple does not trust `define`, we can use it ourselves as a shorthand for
describing particular expressions constructed using this grammar.

It doesn’t look as if Professor Temple believes in functions with more than one argument, but in
fact Professor Temple is fine with this concept; it’s just expressed in a different way. We can create
a function with two arguments in the above grammar by creating a function which consumes the
first argument and returns a function which, when applied to the second argument, returns the
answer we want (this should be familiar from the `make-adder` example from class, Section 10). This
generalizes to multiple arguments.

But what can Professor Temple do without constants? Quite a lot, actually. To start with, here is
Professor Temple’s definition of zero. It is the function which ignores its argument and returns the
identity function.

\[
(\text{define} \ \text{my-zero} \ (\lambda f \ (\lambda x x)))
\]

Another way of describing this representation of zero is that it is the function which takes a function
\(f \) as its argument and returns a function which applies \(f \) to its argument zero times. Then “one”
would be the function which takes a function \(f \) as its argument and returns a function which applies
\(f \) to its argument once.
(define my-one (lambda (f) (lambda (x) (f x))))

Work out the definition of “two”. How might Professor Temple define the function add1? Show that your definition of add1 applied to the above representation of zero yields one, and applied to one yields two. Can you give a definition of the function which performs addition on its two arguments in this representation? What about multiplication?

Now we see that Professor Temple’s representation can handle natural numbers. Can Professor Temple handle Boolean values? Sure. Here are Professor Temple’s definitions of true and false.

(define my-true (lambda (x) (lambda (y) x)))
(define my-false (lambda (x) (lambda (y) y)))

Show that the expression ((c a) b), where c is one of the values my-true or my-false defined above, evaluates to a and b, respectively. Use this idea to define the functions my-and, my-or, and my-not.

What about my-cons, my-first, and my-rest? We can define the value of my-cons to be the function which, when applied to my-true, returns the first argument my-cons was called with, and when applied to the argument my-false, returns the second. Give precise definitions of my-cons, my-first, and my-rest, and verify that they satisfy the algebraic equations that the regular Scheme versions do. What should my-empty be?

The function my-sub1 is quite tricky. What we need to do is create the pair (0, 0) by using my-cons. Then we consider the operation on such a pair of taking the “rest” and making it the “first”, and making the “rest” be the old “rest” plus one (which we know how to do). So the tuple (0, 0) becomes (0, 1), then (1, 2), and so on. If we repeat this operation n times, we get (n-1, n). We can then pick out the “first” of this tuple to be n-1. Since our representation of n has something to do with repeating things n times, this gives us a way of defining my-sub1. Make this more precise, and then figure out my-zero?.

If we don’t have define, how can we do recursion, which we use in just about every function involving lists and many involving natural numbers? It is still possible, but this is beyond even the scope of this challenge; it involves a very ingenious (and difficult to understand) construction called the Y combinator. You can read more about it at the following URL (PostScript document):

http://www.ccs.neu.edu/home/matthias/BTLS/tls-sample.ps

Be warned that this is truly mindbending.

Professor Temple has been possessed by the spirit of Alonzo Church (1903–1995), who used this idea to define a model of computation based on the definition of functions and nothing else. This is called the lambda calculus, and he used it in 1936 to show a function which was definable but not computable (whether two lambda calculus expressions define the same function). Alan Turing later gave a simpler proof which we discussed in the enhancement to Assignment 7. The lambda calculus was the inspiration for LISP, a predecessor of Racket, and is the reason that the teaching languages retain the keyword lambda for use in defining anonymous functions.