
The design recipe

Readings:

HtDP, section 2.5

Thrival and Style Guides

Topics:

Programs as communication

The design recipe

Using the design recipe

Tests

Contracts

Communication Design recipe Usage Tests Contracts

1/20 03: Design Recipe CS 135



Programs as communication

Every program is an act of communication:

Between you and the computer

Between you and yourself in the future

Between you and others

Human-only comments in Racket programs:
from a semicolon (;) to the end of the line.

Communication Design recipe Usage Tests Contracts

2/20 03: Design Recipe CS 135



> Some goals for software design

Programs should be:

compatible

composable

correct

durable

efficient

extensible

flexible

maintainable

portable

readable

reliable

reusable

scalable

testable

usable

useful

Communication Design recipe Usage Tests Contracts

3/20 03: Design Recipe CS 135



The design recipe

The design recipe is an approach to developing a function.

Use it for every function you write in CS 135.

It leaves behind a written explanation of the development

It results in a trusted (tested) function which future readers (you or others) can
understand

Communication Design recipe Usage Tests Contracts

4/20 03: Design Recipe CS 135



> The five design recipe components

Purpose: Describes what the function is to compute.

Contract: Describes what type of arguments the function consumes and what
type of value it produces.

Examples: Illustrating the typical use of the function.

Definition: The Racket definition of the function (header & body).

Tests: A representative set of function applications and their expected values.
Examples also serve as Tests.

Communication Design recipe Usage Tests Contracts

5/20 03: Design Recipe CS 135



> Order of execution

The order in which you carry out the steps of the design recipe is very important.
Use the following order:

1 Write a draft of the Purpose

2 Write Examples (by hand, then code)

3 Write Definition Header & Contract

4 Finalize the purpose with parameter names

5 Write Definition Body

6 Write Tests

Communication Design recipe Usage Tests Contracts

6/20 03: Design Recipe CS 135



Using the design recipe

Purpose (first draft):

;; produce the sum of the squares of two numbers

Examples:

32 + 42 = 9 + 16 = 25

;; Examples:
(check-expect (sum-of-squares 3 4) 25)

Communication Design recipe Usage Tests Contracts

7/20 03: Design Recipe CS 135



> Using the design recipe (cont)

Header & Contract:

;; sum-of-squares: Num Num → Num
(define (sum-of-squares n1 n2)

Purpose (final draft):

;; (sum-of-squares n1 n2) produces the sum of squares of n1 and n2.

Communication Design recipe Usage Tests Contracts

8/20 03: Design Recipe CS 135



> Using the design recipe (cont)

Write Function Body:

(define (sum-of-squares n1 n2)
(+ (sqr n1) (sqr n2)))

Write Tests:

;; Tests
(check-expect (sum-of-squares 0 0) 0)
(check-expect (sum-of-squares -2 7) 53)
(check-expect (sum-of-squares 0 2.5) 6.25)

Communication Design recipe Usage Tests Contracts

9/20 03: Design Recipe CS 135



> Using the design recipe (final result)

;; (sum-of-squares n1 n2) produces the sum of squares of n1 and n2.
;; Examples:
(check-expect (sum-of-squares 3 4) 25)

;; sum-of-squares: Num Num → Num
(define (sum-of-squares n1 n2)
(+ (sqr n1) (sqr n2)))

;; Tests
(check-expect (sum-of-squares 0 0) 0)
(check-expect (sum-of-squares -2 7) 53)
(check-expect (sum-of-squares 0 2.5) 6.25)

Communication Design recipe Usage Tests Contracts

10/20 03: Design Recipe CS 135



Exercise 1

Carefully read the design recipe for (e10 n).

What should this produce? (+ (* 4 (e10 3)) (* 2 (e10 2))) ; ⇒ ?

;; (e10 n) produce 1 followed by n zeros.
;; e10: Nat → Nat
;; Examples:
(check-expect (e10 2) 100)
(check-expect (e10 5) 100000)
(check-expect (e10 0) 1)

(define (e10 n)
((lambda (+ -) (- + -) ; <-- Tie fighter!
) n (lambda (+ /) (cond [(= + 0) 1][else (* 10 (/ (- + 1) /))]))))

(The code is correct, but will not work until we get to Intermediate Student with
lambda. It is intentionally hard to read. Read the design recipe only!)



Tests

Tests should be written later than the code body.

Tests can then handle complexities encountered while writing the body.

Tests don’t need to be “big”.
In fact, they should be small and directed.

The number of tests and examples needed is a matter of judgement.

Do not figure out the expected answers to your tests by running your
program! Always work them out independently.

Communication Design recipe Usage Tests Contracts

11/20 03: Design Recipe CS 135



> Testing methods

The teaching languages offer convenient testing methods:

(check-expect (sum-of-squares 3 4) 25)
(check-within (sqrt 2) 1.414 .001)
(check-error (/ 1 0) "/: division by zero")

check-within should only be used for inexact values.

Tests written using these functions are saved and evaluated at the very end of
your program.

This means that examples can be written as code.

Communication Design recipe Usage Tests Contracts

12/20 03: Design Recipe CS 135



> Examples vs. tests

Examples and tests are the same:

Both compute a result and
compare it to an expected value.

Both use check-expect,
check-within, or check-error.

Both help test the correctness of
the function.

Examples and tests are different:

Examples show typical uses of the
function; tests may focus on more
unusual, complex, or error-prone
cases.

Examples are derived from the
function’s purpose only; tests take
into account the actual code and
more knowledge about what can
go wrong.

Communication Design recipe Usage Tests Contracts

13/20 03: Design Recipe CS 135



Contracts

We will be more careful than HtDP and use abbreviations.
Num: any Racket numeric value (e.g. 2, 3.25, 22

7 )
Int: restriction to integers (e.g. -5, 0, 3)
Nat: restriction to natural numbers (e.g. 0, 1, 2, 3, ...)
Any: any Racket value

We will see more types soon.

Use the most specific type available.

Communication Design recipe Usage Tests Contracts

14/20 03: Design Recipe CS 135



Exercise 2

Write purpose, contract, examples, and tests for the absolute value function abs.



> Additional contract requirements

If there are important constraints on the parameters that are not fully described in
the contract, add an additional requires section to “extend” the contract.

;; (my-function a b c) ...
;; my-function: Num Num Num → Num
;; requires: 0 < a < b
;; c must be non-zero

There is no formal notation for the requires section. Aim for clarity and brevity.
Mathematical notation is nice where it makes sense but is not required.

Communication Design recipe Usage Tests Contracts

15/20 03: Design Recipe CS 135



Exercise 3

Consider the function:

;; (sqrt-shift x c) produce the square root of (x - c).
;; sqrt-shift: Num Num → Num

;; Examples:
(check-expect (sqrt-shift 7 3) 2)
(check-expect (sqrt-shift 125 4) 11)

(define (sqrt-shift x c)
(sqrt (- x c)))

What inputs are invalid?

Write a requires section for this function.



> Contract enforcement

Racket does not enforce contracts, which are just comments, and ignored by the
machine.

Each value created during the running of a program has a type (integer, Boolean,
etc.).

Types are associated with values, not with constants or parameters.

(define p 5)
(define q (mystery-fn 5))

This is known as dynamic typing. When a function is applied to a value with an
inappropriate type, the error is found when that code is executed (which may be
years in the future).

Communication Design recipe Usage Tests Contracts

16/20 03: Design Recipe CS 135



> Contract enforcement

Many other mainstream languages use static typing in which constants,
parameters and values all have specified types. Constants and parameters of one
type may not hold a value of an incompatible type.

With static typing, the header of a function might look like this:

foo(c:Num, g:Nat):Int

Here the contract is part of the language.

A program containing the function application foo(65, 0.333) would be illegal
because 0.333 is not a Nat.

Dynamically typed languages used for developing large programs often develop a
static type system or tools that mimic one.

Communication Design recipe Usage Tests Contracts

17/20 03: Design Recipe CS 135



> Contract enforcement

Dynamic typing is a potential source of both flexibility (as we will see) and
confusion.

Contracts are important in keeping us unconfused. However, they are only
human-readable comments and are not enforced by the computer.

We can also create functions that check their arguments to catch type errors more
gracefully (examples soon).

Unless stated otherwise, you may assume that all arguments provided to a
function will obey the contract (including our automated testing).

Communication Design recipe Usage Tests Contracts

18/20 03: Design Recipe CS 135



Design recipe style guide

Note that in these slides, sections of the design recipe are often omitted or
condensed because of space considerations.

Consult the course style guide before completing your assignments.

Communication Design recipe Usage Tests Contracts

19/20 03: Design Recipe CS 135



Goals of this module

You should understand the reasons for each of the components of the design
recipe and the particular way that they are expressed.

You should start to use the design recipe and appropriate coding style for all
Racket programs you write.

Communication Design recipe Usage Tests Contracts

20/20 03: Design Recipe CS 135


	Communication
	Design recipe
	Usage
	Tests
	Contracts

