Goals of this tutorial
You should be able to...

- use list abbreviations and quote notation for lists.
- understand how to write custom string processing functions
- understand and use the principle of insertion sort to write custom sorting functions.
- use the properties of sorted lists to improve efficiency.
- understand and process two-dimensional data represented by nested lists.

Review: List Abbreviation
List abbreviations are available in language level Beginning Student With List Abbreviations, and all subsequent levels.

The expression

(cons exp1 (cons exp2 (... (cons expn empty)...)))

can be abbreviated as

(list exp1 exp2 ... expn)

Example: (cons 1 (cons 'a (cons 32 (cons "hello" empty))))
is equivalent to (list 1 'a 32 "hello")
Review: List Abbreviation

`cons` and `list` have different results and different purposes.

We use `list` to construct a list of fixed size (whose length is known when we write the program).

We use `cons` to construct a list from one new element (the first) and a list of arbitrary size (whose length is known only when the second argument to `cons` is evaluated during the running of the program).

Review: Quoting Lists

If lists built using `list` consist of just symbols, strings, and numbers, the list abbreviation can be further abbreviated using the quote notation we used for symbols.

`(cons 'red (cons 'blue (cons 'green empty)))` can be written `'(red blue green).

`(list 5 4 3 2)` can be written `'(5 4 3 2), because quoted numbers evaluate to numbers; that is, `'1` is the same as 1.

Now we can write `empty` as `(list)` or `'(())`.

Clicker Question - List Translation

Given this list:

`(list 1 'blue (list 2 3))`

What is the equivalent `cons` statement?

A `(cons 1 (cons 'blue (cons (cons 2 (cons 3 empty)) empty)))`

B `(cons 1 'blue (cons 2 3 empty) empty)`

C `(cons 1 (cons 'blue (cons 2 (cons 3 empty))))`

D `(cons 1 (cons 'blue (cons 2 3)))`

E `(cons 1 (cons 'blue (cons (cons (cons 2 (cons 3 empty)) empty) empty) empty) empty)
Clicker Question - Nested Lists

(cons (cons 5 (cons 4 empty))
 (cons (cons 3 empty)
 (cons (cons 2 (cons 5 empty))
 (cons 5 (cons 4 empty))))))

Which of the following lists is equivalent to the one above?

A (list 5 4 3 2 5 4)
B (list (list 5 4 3) (list 2 5) 5 4)
C (list (list 5 4) (list 3) (list 2 5) 5 4)
D (list (list 5) (list 4) (list 3) (list 2) (list 5) (list 4))
E (list (list 5 4) (list 3) (list 2 5) (list 5 4))

Clicker Question - Parsing Nested Lists

(define lonum (list (list 5) (list 4 3) (list 2) 1))

Which of the following would produce a value of 3?

A (rest (first (rest lonum)))
B (first (rest (rest lonum)))
C (first (rest (rest (rest lonum))))
D (rest (rest (first (rest lonum))))
E (first (rest (first (rest lonum))))

Group Problem - string-vowels

Write a function string-vowels which consumes a string and produces a string of vowels in the same order as they appear in original string.

* You may not use any built-in string functions other than string→list and list→string.
Insertion Sort Trace
We will perform a condensed trace of an insertion sort:

(define (sort lon)
 (cond [(empty? lon) empty]
 [else (insert (first lon) (sort (rest lon)))]))
(define (insert n slon)
 (cond [(empty? slon) (cons n empty)]
 [(<= n (first slon)) (cons n slon)]
 [else (cons (first slon) (insert n (rest slon)))]))

(sort (list 5 3 9 2 5 7 1 4))

Group Problem - Books

<table>
<thead>
<tr>
<th>title</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Operating Systems Principles”</td>
<td>1973</td>
</tr>
<tr>
<td>“The Elements of Programming Style”</td>
<td>1982</td>
</tr>
<tr>
<td>“The Multics System”</td>
<td>1972</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Write a structure definition, and a data definition for a structure called book for the above data. Also write a template for a list of book structures. Note that the date is given as a Natural number representing the year of publication.

Group Problem - sort-book
Given a list of Book, write a function sort-book that sorts the list into chronological order (oldest to newest). Include a purpose, contract, and examples. You may want to look at the insertion sort example in the slides.
Group Problem - sbooks-published
Based on the template written earlier, write a function called sbooks-published that consumes a number representing a year and a list of Books which has already been date-sorted. sbooks-published will produce a list of Books that contains all the books published in that year. To improve efficiency, you should avoid searching through the whole list when possible.

Group Problem - Remove Firsts (Optional)
Write a function called remove-firsts that consumes a (listof (listof Any)). It should produce a new (listof (listof Any)) with the first item removed from each of the sublists. Note that if a list in the (listof (listof Any)) is empty, then no item should be removed from it. Do not use helper functions. Include the contract, examples and tests.

For testing you can include the following test:

(check-expect (remove-firsts '((1 2 3) (2 3) (1) ()))
'((2 3) (3) () ()))