Announcements

- Assignment 05 is due on **Thursday**, February 15.
- The midterm is on **Monday, February 26**, from **7:00 to 8:50 PM**, and covers material up to and including Module 06, Slide 50.
- There is currently a Piazza poll to decide when the Midterm Review Session will be.
Goals of this tutorial

You should be able to...

- Use list abbreviations and quoted list notation for lists.
- Work with lists of structures.
- Recurse on natural numbers.
- Work with fixed-length lists inside another list.
- Understand how insertion sort works.
Review: List Abbreviations

List abbreviations are available in language level Beginning Student with List Abbreviations, and all subsequent levels.

The expression

\[(\text{cons } \text{exp1} (\text{cons } \text{exp2} (\ldots (\text{cons } \text{expn} \text{ empty}) \ldots)))\]

can be abbreviated to

\[(\text{list } \text{exp1} \text{ exp2} \ldots \text{ expn})\]

Example: \((\text{cons } 1 (\text{cons } \text{a} (\text{cons } 32 (\text{cons } \text{"hello" empty}))))\)

is equivalent to \((\text{list } 1 \text{ a 32 } \text{"hello"}).\)
Review: List Abbreviations

cons and list have different results and different purposes.

We use list to construct a list of fixed size (whose length is known when we write the program).

We use cons to construct a list from one new element (the first) and a list of arbitrary size (whose length is known only when the second argument to cons is evaluated during the running of the program).
Review: Quoting Lists

If lists built using list consist of just symbols, strings, and numbers, they may be further abbreviated using quotes.

(cons 'red (cons 'blue (cons 'green empty))) can be written as '(red blue green).

(list 5 4 3 2) can be written as '(5 4 3 2), because quoted numbers evaluate to numbers; that is, '1 is the same as 1.

The same goes for strings: (list "hi" "bye") can be written as '("hi" "bye")

Now we can write empty as (list) or '().
Clicker Question: List Translation

Given this list:

\[(\text{list } 1 \ '\text{blue} \ (\text{list } 2 \ 3))\]

What is the equivalent \texttt{cons} statement?

A \ (\texttt{cons } 1 \ (\texttt{cons } '\text{blue} \ (\texttt{cons } (\texttt{cons } 2 \ (\texttt{cons } 3 \ \texttt{empty})) \ \texttt{empty}))))
B \ (\texttt{cons } 1 \ '\text{blue} \ (\texttt{cons } 2 \ 3 \ \texttt{empty}) \ \texttt{empty})
C \ (\texttt{cons } 1 \ (\texttt{cons } '\text{blue} \ (\texttt{cons } 2 \ (\texttt{cons } 3 \ \texttt{empty}))))
D \ (\texttt{cons } 1 \ (\texttt{cons } '\text{blue} \ (\texttt{cons } 2 \ 3)))
E \ (\texttt{cons } 1 \ (\texttt{cons } '\text{blue} \ (\texttt{cons } (\texttt{cons } (\texttt{cons } 2 \ (\texttt{cons } 3 \ \texttt{empty})) \ \texttt{empty}) \ \texttt{empty}) \ \texttt{empty}) \ \texttt{empty})
Clicker Question: Nested Lists

\[(\text{cons } (\text{cons } 5 \text{ empty})
\quad \text{ (cons } 3 \text{ (cons } (\text{cons } 2 \text{ (cons } 5 \text{ empty}))
\quad \text{ (cons } 4 \text{ empty}))\))\]

Which of the following lists is equivalent to the one above?

A \[(\text{list } 5 \ 3 \ 2 \ 5 \ 4)\]

B \[(\text{list } (\text{list } 5) \ (\text{list } 3 \ 2 \ 5) \ 4)\]

C \[(\text{list } (\text{list } 5) \ 3 \ (\text{list } 2 \ 5) \ 4)\]

D \[(\text{list } (\text{list } 5) \ (\text{list } 3) \ (\text{list } 2) \ (\text{list } 5) \ (\text{list } 4))\]
Clicker Question: Nested Lists

(define lonum (list (list 5) (list 4 3) (list 2) 1))

Which of the following would produce a value of 3?

A (rest (first (rest lonum)))
B (first (rest (rest lonum)))
C (first (rest (rest (rest lonum))))
D (rest (rest (first (rest lonum))))
E (first (rest (first (rest lonum))))
Lists of Structures: Books

Consider the following structure and data definition:

```
(define-struct book (title author pages))
;; A Book is a (make-book Str Str Nat)
;; requires: pages > 0
;; title and author are non-empty
```

Write a template, `listof-book-template`, for a list of Book structures.
Group problem: max-pages

Using your template, write a function `max-pages`, which consumes a positive natural number `max-len`, and a list of Books. The function produces a list of strings containing the titles of the Books in the consumed list which have a page length less than or equal to `max-len`. The titles in the produced list should appear in the same relative order as the consumed list. For example:

```lisp
(max-pages 500 (list (make-book "Calculus 3" "John Smith" 374)
  (make-book "Linear Algebra 2" "Jane Doe" 687)
  (make-book "Statistics 1" "Johnny Roe" 68)))
⇒ (list "Calculus 3" "Statistics 1")
```
Group Problem: powers-of-k-alt

Recall the following template for counting up with Natural Numbers:

\[
(\text{define } (\text{upto-b-template } n \ b) \\
 (\text{cond } [(= \ n \ b) \ (\ldots \ b \ \ldots)] \\
 \quad [\text{else } (\ldots \ n \ \ldots \\
 \quad \quad \ldots \ (\text{upto-b-template } (\text{add1 } n) \ b) \ \ldots)])])
\]

Using the above template, write a function \textit{powers-of-k-alt} that consumes natural numbers \(b\) and \(k\), and produces a list of length \(b\) containing \((k^1, -k^2, k^3, -k^4, \ldots, \pm k^b)\), where the even powers of \(k\) are negated. For example, \((\text{powers-of-k-alt } 6 \ 3)\) produces \((\text{list } 3 \ -9 \ 27 \ -81 \ 243 \ -729)\).

You may find it helpful to make \textit{powers-of-k-alt} a wrapper function.
Group Problem: Fixed Length Lists

Consider the following data definition:

;;; A Pair is a (list (anyof Num Sym) Num)
;;; requires: the first element of a Pair is less than or equal to the second
;;; element, if they are both numbers

Write a function `valid-listof-pairs?`, that consumes a list, where each element is an arbitrary list of length 2, and produces `true` if each element in the list can be considered a Pair, according to the above data definition, and `false` otherwise.
Insertion Sort Trace

We will perform a condensed trace of an insertion sort:

(define (sort lon)
 (cond [(empty? lon) empty]
 [else (insert (first lon) (sort (rest lon)))]))

(define (insert n slon)
 (cond [(empty? slon) (cons n empty)]
 [(<= n (first slon)) (cons n slon)]
 [else (cons (first slon) (insert n (rest slon)))]))

(sort (list 5 3 9 2 5 7 1 4))
Insertion Sort Trace

(sort (list 5 3 9 2 5 7 1 4))

5 3 9 2 5 7 1 4
Insertion Sort Trace
(sort (list 5 3 9 2 5 7 1 4))

=> (insert 5 (sort (list 3 9 2 5 7 1 4)))
Insertion Sort Trace

\[\text{(sort (list 5 3 9 2 5 7 1 4))} \]

\[\Rightarrow (\text{insert 5 (sort (list 3 9 2 5 7 1 4))}) \]

\[\Rightarrow (\text{insert 5 (insert 3 (sort (list 9 2 5 7 1 4))})) \]
Insertion Sort Trace

$$\Rightarrow (\text{insert } 5 (\text{sort } (\text{list } 3 \ 9 \ 2 \ 5 \ 7 \ 1 \ 4)))$$

$$\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{sort } (\text{list } 9 \ 2 \ 5 \ 7 \ 1 \ 4))))$$

$$\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{sort } (\text{list } 2 \ 5 \ 7 \ 1 \ 4)))))$$
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{sort } (\text{list } 9 \ 2 \ 5 \ 7 \ 1 \ 4))))\]

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{sort } (\text{list } 2 \ 5 \ 7 \ 1 \ 4))))\]

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \ (\text{sort } (\text{list } 5 \ 7 \ 1 \ 4))))))\]

![Insertion Sort Trace Diagram](image-url)
Insertion Sort Trace

\[
\text{\textbf{=> } (insert 5 (insert 3 (insert 9 (insert 2 (sort (list 5 7 1 4))))))}
\]

\[
\text{\textbf{=> } (insert 5 (insert 3 (insert 9 (insert 2)}
\]

\[
\text{(insert 5 (sort (list 7 1 4)))))})}
\]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2
\hspace{1cm} (\text{insert } 5 (\text{sort (list 7 1 4))})))))\]

\[\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2
\hspace{1cm} (\text{insert } 5 (\text{insert } 7 (\text{sort (list 1 4))}))))))\]
Insertion Sort Trace

\[
\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \ (\text{insert } 5 \ (\text{insert } 7 \ (\text{sort \ (list \ 1 \ 4))\)))))))
\]

\[
\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \ (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{sort \ (list \ 4))\))))))))
\]
Insertion Sort Trace

\[
\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\quad \ (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{sort } (\text{list } 4)))))))))
\]

\[
\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\quad \ (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{insert } 4 \ (\text{sort } \text{empty})))))))))
\]
Insertion Sort Trace

\[
=> (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2
\hspace{1cm} (\text{insert } 5 (\text{insert } 7 (\text{insert } 1 (\text{insert } 4 (\text{sort empty}))))))))
\]

\[
=> (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2
\hspace{1cm} (\text{insert } 5 (\text{insert } 7 (\text{insert } 1 (\text{insert } 4 \text{ empty})))))))
\]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\quad (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{insert } 4 \ \text{empty})))))))))
\]

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\quad (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{list } 4))))))))
\]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\ (\text{insert } 5 \ (\text{insert } 7 \ (\text{insert } 1 \ (\text{list } 4)))))))) \]

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \\
\ (\text{insert } 5 \ (\text{insert } 7 \ (\text{list } 1 \ 4)))))))) \]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \ \\
(\text{insert } 5 \ (\text{insert } 7 \ (\text{list } 1 \ 4))))))) \]

\[\Rightarrow (\text{insert } 5 \ (\text{insert } 3 \ (\text{insert } 9 \ (\text{insert } 2 \ \\
(\text{insert } 5 \ (\text{list } 1 \ 4 \ 7)))))) \]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2 \\
\text{\hspace{1cm} (\text{insert } 5 (\text{list } 1 \ 4 \ 7))}))))) \]

\[\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2 \\
\text{\hspace{1cm} (\text{list } 1 \ 4 \ 5 \ 7))})))) \]
Insertion Sort Trace

\[
\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{insert } 2 \\
\hspace{1cm} (\text{list } 1 4 5 7))))))\\
\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{list } 1 2 4 5 7))))
\]
Insertion Sort Trace

\[
\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{insert } 9 (\text{list } 1 \ 2 \ 4 \ 5 \ 7))))
\]

\[
\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{list } 1 \ 2 \ 4 \ 5 \ 7 \ 9)))
\]
Insertion Sort Trace

\[\Rightarrow (\text{insert } 5 (\text{insert } 3 (\text{list } 1 2 4 5 7 9))) \]

\[\Rightarrow (\text{insert } 5 (\text{list } 1 2 3 4 5 7 9)) \]
Insertion Sort Trace

\[\Rightarrow \text{(insert 5 (list 1 2 3 4 5 7 9))} \]

\[\Rightarrow \text{(list 1 2 3 4 5 5 7 9)} \]