Goal of this Tutorial

The goal of this tutorial is to reinforce the following material:

- Efficiency
Efficiency

- When looking at a function, it is often useful to understand its running time.
- To do this, we compute the running time as a function of the input size, and use Big O notation to simplify the computation.

In this course, we will see the following running times:

\[O(1) \quad O(\log n) \quad O(n) \quad O(n \log n) \quad O(n^2) \quad O(n^3) \quad O(2^n) \]

These are similar to what you may have seen in Calculus 2 on growth rates of sequences.
Recursive Functions

Recall the steps for a recursive function:

1. Identify the order of the function excluding any recursion

2. Determine the size of the input for the next recursive call(s)

3. Write the full recurrence relation (combine step 1 & 2)

4. Look up the closed-form solution in a table
Recurrence Relations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = O(1) + T(n - k_1)$</td>
<td>$= O(n)$</td>
</tr>
<tr>
<td>$T(n) = O(n) + T(n - k_1)$</td>
<td>$= O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = O(n^2) + T(n - k_1)$</td>
<td>$= O(n^3)$</td>
</tr>
<tr>
<td>$T(n) = O(1) + T\left(\frac{n}{k_2}\right)$</td>
<td>$= O(\log n)$</td>
</tr>
<tr>
<td>$T(n) = O(1) + k_2 \cdot T\left(\frac{n}{k_2}\right)$</td>
<td>$= O(n)$</td>
</tr>
<tr>
<td>$T(n) = O(n) + k_2 \cdot T\left(\frac{n}{k_2}\right)$</td>
<td>$= O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = O(1) + T(n - k_1) + T(n - k'_1)$</td>
<td>$= O(2^n)$</td>
</tr>
</tbody>
</table>

where $k_1, k'_1 \geq 1$ and $k_2 > 1$
Iterative analysis

Recall the steps for an iterative function:

1. Work from the *innermost* loop to the *outermost*

2. Determine the number of iterations in the loop (in the worst case) in relation to the size of the input (n) or an outer loop counter

3. Determine the running time per iteration

4. Write the summation(s) and simplify the expression
Common Summations

\[
\sum_{i=1}^{\log n} O(1) = O(\log n)
\]

\[
\sum_{i=1}^{n} O(1) = O(n)
\]

\[
\sum_{i=1}^{n} O(n) = O(n^2)
\]

\[
\sum_{i=1}^{n} O(i) = O(n^2)
\]

\[
\sum_{i=1}^{n} O(i^2) = O(n^3)
\]
Exercise: Magic Square

- Go into Seashell and implement our modified version of the magic square puzzle. This exercise should give you practice in writing a backtracking algorithm. For this program, you may assume that all empty squares contain the value 0.

- `solve_square(magic, target)` will solve the given 3x3 magic square such that the sum of every row and column is target and all of the entries are positive.

 - requires: magic is a valid square
 - effects: modifies magic