Floating Point Numbers

• How do we store decimal numbers in a computer?
• In scientific notation, we can represent numbers say by

 \[-2.61202 \cdot 10^{30}\]

 where \(-2.61202\) is called the precision and 30 is called the range.
• On a computer, we can do a similar thing to help store decimal numbers.
Data Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Precision</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>7 digits</td>
<td>±38</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>16 digits</td>
<td>±308</td>
</tr>
</tbody>
</table>

Note: You will almost always use the type `double`
Conversion Specifications

There are many different ways we can display these numbers using the `printf` command. They in general have the format `%\pm \ m.pX` where

- ± is the right or left justification of the number depending on if the sign is positive or negative respectively
- m is the minimum field width, that is, how many spaces to leave for numbers
- p is the precision (this heavily depends on X as to what it means)
- X is a letter specifying the type (see next slide)
Conversion Specifications Continued

Some of the possible values for \(x \)

- \(%d \) refers to a decimal number. The precision here will refer to the minimum number of digits to display. Default is 1.
- \(%e \) refers to a float in exponential form. The precision here will refer to the number of digits to display after the decimal point. Default is 6.
- \(%f \) refers to a float in “fixed decimal” format. The precision here is the same as above.
- \(%g \) refers to a float in one of the two aforementioned forms depending on the number’s size. The precision here is the maximum number of \textbf{significant digits} (not the number of decimal points!) to display. This is the most versatile option useful if you don’t know the size of the number.
Example

```c
#include <stdio.h>
int main(void) {
    double x = -2.61202e30;
    printf("%zu\n",
            sizeof(double));
    printf("%f\n", x);
    printf("%.2e\n",x);
    printf("%g\n",x);
    return 0;
}
```

Notice that on the %f line above we get some garbage at the end (it is tough for a computer to store floating numbers!).
Write the code that displays the following numbers (Ensure you get the white space correct as well!)

1. \(3.14150e+10\)
2. \(0436\) (two leading white spaces)
3. \(436\) (three white spaces at the end)
4. \(2.00001\)
IEEE 754 Floating Point Standard

- IEEE - Institute of Electrical and Electronics Engineers

Number is

\[(-1)^{\text{sign}} \cdot \text{fraction} \cdot 2^{\text{exponent}} \]

(This is a bit of a lie but good enough for us - the details of this can get messy. See Wikipedia if you want more information)

(Picture courtesy of Wikipedia)
A Fun Aside

• How do I convert 0.1 as a decimal number to a decimal number in binary?

• Binary fractions are sometimes called 2-adic numbers.

• Idea: Write 0.1 as below where each a_i is one of 0 or 1 for all integers i.

$$0.1 = \frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8} + \ldots + \frac{a_k}{2^k} + \ldots$$

• Our fraction will be

$$0.1 = (0.a_1a_2a_3\ldots)_2$$

once we determine what each of the a_i terms are.
Computing the Binary Representation

- From

\[0.1 = \frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8} + \ldots + \frac{a_k}{2^k} + \ldots \]

- Multiplying by 2 yields

\[0.2 = a_1 + \frac{a_2}{2} + \frac{a_3}{4} + \ldots + \frac{a_k}{2^{k-1}} + \ldots \text{(Eqn1)} \]

and so \(a_1 = 0 \) since \(0.2 < 1 \).

- Repeating gives

\[0.4 = a_2 + \frac{a_3}{2} + \frac{a_4}{4} + \ldots + \frac{a_k}{2^{k-2}} + \ldots \]

and again \(a_2 = 0 \).
Continuing

• From

\[0.4 = 0 + \frac{a_3}{2} + \frac{a_4}{4} + \ldots + \frac{a_k}{2^{k-2}} + \ldots \]

multiplying by 2 gives

\[0.8 = a_3 + \frac{a_4}{2} + \frac{a_5}{4} \ldots + \frac{a_k}{2^{k-3}} \]

and again \(a_3 = 0 \). Doubling again gives

\[1.6 = a_4 + \frac{a_5}{2} + \frac{a_6}{4} \ldots + \frac{a_k}{2^{k-4}} \]

and so \(a_4 = 1 \). Now, we subtract 1 from both sides and then repeat to see that... (see next slide)
Continuing

\[1.6 - 1 = \frac{a_5}{2} + \frac{a_6}{4} \ldots + \frac{a_k}{2^{k-4}} \]

\[0.6 = \frac{a_5}{2} + \frac{a_6}{4} \ldots + \frac{a_k}{2^{k-4}} \]

\[1.2 = a_5 + \frac{a_6}{2} + \frac{a_7}{4} \ldots + \frac{a_k}{2^{k-4}} \]

giving \(a_5 = 1 \) as well. At this point, subtracting 1 from both sides gives

\[0.2 = \frac{a_6}{2} + \frac{a_7}{4} \ldots + \frac{a_k}{2^{k-4}} \]

which is the same as (Eqn 1) from two slides ago and hence,

\[(0.1)_{10} = (0.00011)_{2} \]
Short Hand

\[
0.1 \cdot 2 = 0.2 \\
0.2 \cdot 2 = 0.4 \\
0.4 \cdot 2 = 0.8 \\
0.8 \cdot 2 = 1.6 \\
0.6 \cdot 2 = 1.2 \\
0.2 \cdot 2 = 0.4
\]

and so \((0.1)_{10} = (0.00011)_{2}\)
Errors

- Notice that these floating point numbers only store rational numbers, that is, they cannot store real numbers (though there are CAS packages like Sage which try to).
- This for us is okay since the rationals can approximate real numbers as accurately as we need.
- When we discuss errors in approximation, we have two types of measures we commonly use, namely absolute error and relative error.
• Let r be the real number we’re approximating and let p be the exact value.

• Absolute Error $|p - r|$. Eg. $|3.14 - \pi| \approx 0.0015927...$

• Relative Error $\frac{|p - r|}{r}$. Eg. $\frac{|3.14 - \pi|}{\pi} = 0.000507$.

• Note: Relative error can be large when r is small even if the absolute error is small.
Errors (Continued)

Be wary of...

- Subtracting nearly equal numbers
- Dividing by very small numbers
- Multiplying by very large numbers
- Testing for equality
#include <stdio.h>
int main(void) {
 double a = 7.0/12.0;
 double b = 1.0/3.0;
 double c = 1.0/4.0;
 if (b+c==a) printf("Everything is Awesome!");
 else printf("Not cool... \%g",b+c-a);
}

Watch out...

- Comparing \(x == y \) is often risky.
- To be safe, instead of using `if (x==y)` you can use `if (x-y < 0.0001 && y-x < 0.0001)` (or use absolute values - see next lecture!)
- We sometimes call \(\epsilon = 0.0001 \) the **tolerance**.
- Note: Sometimes it is okay to compare floats to constants such as `if (x==0.0)` but you’re best to exercise caution. Comparing to 0 is a surprisingly difficult problem.
What happens when you type `double a = 1/3`? Do you get `0.33333`?

In C, most operators are overloaded. When it sees `1/3`, C reads this as integer division and so returns the value of `0`.

There are a few ways to fix this, one of them is to make at least one of the value a double (or a float) by writing `double a = 1.0/3` (dividing a double by an integer or a double gives a double).

Another way is by typecasting, that is, explicitly telling C to make a value something else.

For example, `double a = ((double)1)/3` will work as expected.
Math Library (Highlights)

- `#include <math.h>`
- Lots of interesting functions including:
 - `double sin(double x)` and similarly for `cos, tan, asin, acos, atan` etc.
 - `double exp(double x)` and similarly for `log, log10, log2, sqrt, fabs, ceil, floor` etc. (note `log` is the natural logarithm and `fabs` is the absolute value)
 - `int abs(int x)` is the absolute value function
 - `double pow(double x, double y)` gives x^y, the power function.
 - Constants: `M_PI, M_PI_2, M_PI_4, M_E, M_LN2, M_SQRT2`
 - Other values: `INFINITY, NaN, MAXFLOAT`
A polynomial is an expression with at least one indeterminate and coefficients lying in some set.

For example, $3x^3 + 4x^2 + 9x + 2$.

In general: $p(x) = a_0 + a_1x + \ldots + a_nx^n$

We will primarily use ints for the coefficients. (maybe doubles later)

Question: Brainstorm some different ways we can represent polynomials in memory. Discuss the pros and cons of each.
Our Representation

- We will represent it as an array of \(n + 1 \) coefficients where \(n \) is the degree.
- For our example \(3x^3 + 4x^2 + 9x + 2 \), we have
  ```
  double p[] = {2.0, 9.0, 4.0, 3.0};
  ```
- How do we evaluate a polynomial? That is, how can we implement:
  ```
  double eval(double p[], int n, double x);
  ```
Traditional Method

- Compute x, x^2, x^3, \ldots, x^n for $n - 1$ multiplications.
- Multiply each by a_1, a_2, \ldots, a_n for another n multiplications.
- Add all the results $a_0 + a_1x + \ldots + a_nx^n$ for a final n multiplications.
- This gives a total of $2n - 1$ multiplications and n additions.
- A note: Multiplication is an expensive operation compared to addition. Is there a way to reduce the number of multiplication operations?
Horner’s Method

- Named after William George Horner (1786-1837) but known long before him (dating back as early as pre turn of millennium Chinese mathematicians).

- Idea:

\[2 + 9x + 4x^2 + 3x^3 = 2 + x(9 + x(4 + 3x)) \]

- Start inside out. Total operations are \(n \) multiplications and \(n \) additions.
Horner’s Method

```c
#include <stdio.h>
#include <cassert.h>
double horner(double p[], int n, double x){
    assert(n > 0);
    double y = p[n-1];
    for(int i=n-2; i >= 0; i--)
        y = y*x + p[i];
    return y;
}
```
int main(void) {
 double p[] = {2, 9, 4, 3};
 int len = sizeof(p)/sizeof(p[0]);
 printf("2 = %g
", horner(p, len, 0));
 printf("18 = %g
", horner(p, len, 1));
 printf("60 = %g
", horner(p, len, 2));
 printf("-6 = %g
", horner(p, len, -1));
 return 0;
}

Horner's Method (Continued)
Root Finding

- Given a function $f(x)$, how can we determine a root?
- Example: $f(x) = x - \cos(x)$. Courtesy: Desmos.
Idea

• Notice that \(f(-10) < 0 < f(10) \) so a root must be in the interval of \([-10, 10]\) (why!?)
• Look at the midpoint of the interval (namely 0) and evaluate \(f(0) \).
• If \(f(0) > 0 \), look for a root in the interval \([-10, 0]\). Otherwise, look for a root in \([0, 10]\).
• Repeat until a root is found.
Bisection Method

- For which types of functions is this method guaranteed to work?
- What cases should we worry about?
- Can we run forever?
- What is our stopping condition?

- Two stopping conditions possible
 - Stop when \(|f(m)| < \epsilon\) for some fixed \(\epsilon > 0\) where \(m\) is the midpoint of the interval. (Not great since actual root might still be far away)
 - Stop when \(|m^{n} - m^{n-1}| < \epsilon\) (where \(m^{n}\) is the \(n\)th midpoint). (Much better)
- Should include a safety escape, namely some fixed number of iterations.
Bisection Method

- For which types of functions is this method guaranteed to work?
- What cases should we worry about?
- Can we run forever?
- What is our stopping condition?
- Two stopping conditions possible
 - Stop when $|f(m)| < \epsilon$ for some fixed $\epsilon > 0$ where m is the midpoint of the interval. (Not great since actual root might still be far away)
 - Stop when $|m_{n-1} - m_n| < \epsilon$ (where m_n is the nth midpoint). (Much better)
- Should include a safety escape, namely some fixed number of iterations.
Algorithm Pseudocode

- Given some \(a \) and \(b \) with \(f(a) > 0 \) and \(f(b) < 0 \), set \(m = (a + b)/2 \).
- If \(f(m) < 0 \), set \(b = m \).
- Otherwise, set \(a = m \)
- Loop until either \(|f(m)| < \epsilon \), \(|m_{n-1} - m_n| < \epsilon \), or the number of iterations has been met.
#ifndef BISECTION_H
#define BISECTION_H

/*
Pre : None
Post : Returns the value of x - cos (x)
*/
double f(double x);

/*
Pre : epsilon > 0 is a tolerance , iterations > 0,
 f(x) has only one root in [a,b] , f(a)f(b) < 0
Post : Returns an approximate root of f(x) using
 bisection method . Stops when either number of
 iterations is exceeded or |f(m)| < epsilon
*/
double bisect (double a, double b,
 double epsilon , int iterations);
#endif
Bisection.h

#ifndef BISECTION_H
#define BISECTION_H

/*
Pre: None
Post: Returns the value of x - cos(x)
*/
double f(double x);

/*
Pre: epsilon > 0 is a tolerance, iterations > 0, f(x) has only one root in [a,b], f(a)f(b) < 0
Post: Returns an approximate root of f(x) using bisection method. Stops when either number of iterations is exceeded or |f(m)| < epsilon
*/
double bisect(double a, double b, double epsilon, int iterations);
#endif
Bisection.c

#include <assert.h>
#include <math.h>
#include "bisection.h"

double f(double x){ return x - cos(x);}

double bisect(double a, double b,
 double epsilon, int iterations){
 double m=a, fm;
 assert(epsilon > 0.0 && f(a)*f(b) < 0);
 for(int i=0; i<iterations; i++){
 m = (a+b)/2.0;
 fm = f(m); //Why is this a good idea?
 if (fabs(b-a) < epsilon) return m;
 //Alternatively:
 //if (fabs(fm) < epsilon) return m;
 if (fm*f(b) > 0) b=m;
 else a=m;
 }
 return m;
}
```c
#include <stdio.h>
#include "bisection.h"
int main(void) {
    printf("%g\n", bisect(-10,10,0.0001,50));
    return 0;
}
```
Calculating the Number of Iterations

- An advantage to using the condition $|m_n - m_{n-1}| < \epsilon$ is that this gives us good accuracy on the actual root.
- Another is that we can compute the number of iterations fairly easily (and so don’t necessarily need our iterations guard).
- After each iteration, the length of the interval is cut in half, so, we seek to find a value for n such that

 $$\epsilon > \frac{b - a}{2^n}$$

rearranging gives

 $$2^n > \frac{b - a}{\epsilon}$$

and so after logarithms

 $$n \log 2 > \log(b - a) - \log(\epsilon)$$

with $b = 10$, $a = -10$, $\epsilon = 0.0001$, we get $n > 17.60964$.
Another Method - Fixed Point Iteration

- Given a function $g(x)$, we seek to find a value x_0 such that $g(x_0) = x_0$.
- We call such a point a fixed point.
- These are of significant importance in dynamical systems.
- In our example, looking for a root of $f(x) = x - \cos(x)$ is the same problem as finding a fixed point of $g(x) = \cos(x)$.
- Note: Not all functions have fixed points (but we can transfer between root solving problems and fixed point problems).
- There is another more visual way to interpret this...
Also known as **Cobwebbing**. (Courtesy Desmos)
A Note

\[x_0 = 0 \]
\[g(x_0) = 1 \]
\[g(g(x_0)) = g(1) = 0.540 \]
\[g(g(g(x_0))) = g(g(1)) = g(0.540) = 0.858 \]
\[g(g(g(g(x_0)))) = g(g(g(1))) = g(g(0.540)) = g(0.858) = 0.654 \]

- It turns out by the Banach Contraction Mapping Theorem (or the Banach Fixed Point Theorem) that if the slope of the tangent line at a fixed point has magnitude less than 1, this cobwebbing process will eventually converge to a suitable starting point.
Pseudocode

- Start with some point x_0.
- Compute $x_1 = g(x_0)$.
- If $|x_1 - x_0| < \epsilon$, stop.
- Otherwise go back to the beginning with $x_0 = x_1$.
ifndef FIXED_H
define FIXED_H

/* Pre : None
Post : Returns the value of cos (x) */
double g(double x);

/*
Pre : epsilon > 0 is a tolerance , iterations > 0,
x0 is sufficiently close to a stable fixed point
Post : Returns an approximate fixed point of g(x)
using cobwebbing . Stops when either number of
iterations is exceeded or |g(xi)-xi| < epsilon
where xi is the value of x0 after i iterations .
*/
double fixed(double x0 , double epsilon ,
int iterations);

endif
#ifndef FIXED_H
#define FIXED_H

/* Pre: None
Post: Returns the value of cos(x) */
double g(double x);

/*
Pre: epsilon > 0 is a tolerance, iterations > 0, x0 is sufficiently close to a stable fixed point
Post: Returns an approximate fixed point of g(x) using cobwebbing. Stops when either number of iterations is exceeded or |g(xi)-xi| < epsilon where xi is the value of x0 after i iterations.
*/
double fixed(double x0, double epsilon, int iterations);
#endif
#include <assert.h>
#include <math.h>
#include "fixed.h"

double g(double x){return cos(x);}

double fixed(double x0, double epsilon, int iterations){
 double x1;
 assert(epsilon > 0.0);
 for(int i=0; i<iterations; i++){
 x1 = g(x0);
 if (fabs(x1-x0) < epsilon) return x1;
 x0 = x1;
 }
 return x0;
}
```c
#include <stdio.h>
#include "fixed.h"

int main(void) {
    printf(">\n", fixed(0,0.0001,50));
    return 0;
}
```
Improving the previous two codes

- Notice in each of the two previous examples, we hard coded a definition of a function.
- Ideally, the code would also have as a parameter the function itself.
- C lets us do this using function pointers.
- Syntax: Pass a parameter `double (*f)(double)` a pointer to a function that consumes a double and returns a double.
- Note: The brackets around `(*f)` are important to not confuse this with a function that returns a pointer.
ifndef BISECTION2_H
define BISECTION2_H

double bisect2 (double a, double b, double epsilon, int iterations, double (*f)(double));

endif
#ifndef BISECTION2_H
#define BISECTION2_H

double bisect2(double a, double b, double epsilon, int iterations, double (*f)(double));
#endif
#include <assert.h>
#include <math.h>
#include "bisection2.h"

double bisect2(double a, double b, double epsilon, int iterations, double (*f)(double)={
 double m=a, fm;
 assert(epsilon > 0.0 && f(a)*f(b) < 0);
 for(int i=0; i<iterations; i++){
 m = (a+b)/2.0;
 if (fabs(m-a) < epsilon) return m;
 if (f(m)*f(b) > 0) b=m;
 else a=m;
 }
 return m;
}
include <stdio.h>
#include <math.h>
#include "bisection2.h"

double g(double x){return x - cos(x);}
double h(double x){return x*x*x-x+1;}

int main(void) {
 printf("%g\n", bisect2(-10,10,0.0001,50,g));
 printf("%g\n", bisect2(-10,10,0.0001,50,h));
 return 0;
}