Floating Point and Intro to MIPS

CS230 Tutorial 04
Floating Point

The idea is to encode a number with a fractional part in binary. We split into three parts: sign (S), fraction (F) and exponent (E). A fourth part, called the bias (B) is always already known!

The formula is:

$$(-1)^S \times 1.F \times 2^{E-B}$$
Floating Point Example

Formula: \((-1)^{S} \times 1.F \times 2^{E-B}\)

Example 8-bit format: 1-bit sign, 3-bit exponent, 4-bit fraction, bias = 3

\((-1)^1 \times 1.1011 \times 2^{6-3}\) simplify \(-1 \times 1.1011 \times 2^{3}\) multiply \(-1101.1\) convert \(-13.5\)
Floating Point Example

Formula: \((-1)^S \times 1.F \times 2^{E-B}\)

Example 8-bit format: 1-bit sign, 3-bit exponent, 4-bit fraction, bias = 3

\[
6.375 \quad 6\div2 = 3 \quad R \quad 0 \quad 0.375 \times 2 = 0.75 \\
3\div2 = 1 \quad R \quad 1 \quad 0.75 \times 2 = 1.5 \\
1\div2 = 0 \quad R \quad 1 \quad 0.5 \times 2 = 1.0
\]
Floating Point Practice

Convert the following decimal numbers to floating point:
3.5
-4.75

Convert the following floating point numbers to decimal:
10110110
01001101

The format is: 1-bit sign, 3-bit exponent, 4-bit fraction, bias = 3

Recall the formula: \((-1)^S \times 1.F \times 2^{E-B}\)
Floating Point Practice - Solutions

Convert the following decimal numbers to floating point:

3.5 = (-1)^0 × 1.1100 × 2^{4-3} = 01001100

-4.75 = (-1)^1 × 1.0011 × 2^{5-3} = 11010011

Convert the following floating point numbers to decimal:

10110110 = (-1)^1 × 1.0110 × 2^{3-3} = -1.0110 = -1.375

01001101 = (-1)^0 × 1.1101 × 2^{4-3} = 11.101 = 3.625

The format is: 1-bit sign, 3-bit exponent, 4-bit fraction, bias = 3

Recall the formula: (-1)^S × 1.F × 2^{E-B}
Floating Point Addition

Just line up the decimal points!

Example:

\[
\begin{align*}
11.001 \times 2^4 & \quad +1101.001 \times 2^2 \\
+11.01001 \times 2^4 & \quad +11.01001 \times 2^4 \\
110.01101 \times 2^4 & \quad 110.01101 \times 2^4 \\
\end{align*}
\]
Floating Point Addition Practice

Add the following sets of binary decimals:

\[
\begin{align*}
1.0010 \times 2^4 & \quad +1.101101 \times 2^6 \\
1.00101 \times 2^6 & \quad +1.01 \times 2^3
\end{align*}
\]
Floating Point Addition Practice - Solutions

Add the following sets of binary decimals:

\[
\begin{align*}
1.0010 \times 2^4 & \quad +1.00101 \times 2^0 \\
+1.101101 \times 2^6 & \quad +1.01 \times 2^3 \\
0.010010 \times 2^6 & \quad 1.00101 \times 2^0 \\
+1.101101 \times 2^6 & \quad +1010.0 \times 2^3 \\
1.111111 \times 2^6 & \quad 1011.00101 \times 2^0
\end{align*}
\]
We’ve learned about the simple MIPS operations add and sub during lecture. Let’s introduce addi!

`addi` takes a target register, a source register, and an immediate

Example:

`addi $3, $0, 4`
Sets register 3 to the value in register 0, plus 4
- Register 0 always has value zero
- So the result here is always 4

`addi $2, $5, 3`
Sets register 2 to the value in register 5, plus 3
MIPS First Program

Now that we know add, sub, and addi, let’s write a simple program. We want to calculate this formula:

\[z = 2x + y - 12 \]

We assume the value for \(x \) is in $1, the value for \(y \) is in $2, and we are trying to put the result (the value for \(z \)) in $3.

Notice that $1 means “register 1”, and $2 means “register 2” etc. This is a common shorthand, and is required in assembly language.
MIPS First Program - Solution

add $3, $1, $1
add $3, $3, $2
addi $4, $0, 12
sub $3, $3, $4
MIPS Programming Practice

Write your own programs that compute the following formulas.

\[z = (x - 5) + (y - 13) \]

\[z = (x + y + 3) - (x + 2) \]

Again we assume the value for \(x \) is in $1, the value for \(y \) is in $2, and we are trying to put the result (the value for \(z \)) in $3.
MIPS Programming Practice - Solutions

\[z = (x - 5) + (y - 13) \]

\[
\text{addi } \$3, \$1, -5 \\
\text{addi } \$4, \$2, -13 \\
\text{add } \$3, \$3, \$4
\]

\[z = (x + y + 3) - (x + 2) \]

\[
\text{add } \$3, \$1, \$2 \\
\text{addi } \$3, \$3, 3 \\
\text{addi } \$4, \$1, 2 \\
\text{sub } \$3, \$3, \$4
\]
What formula do the following programs compute? Assume the value for x is in $1, the value for y is in $2, and the value for z is in $3 at the end.

```
addi $3, $1, -2
sub $3, $3, $2
add $3, $1, $1
add $3, $3, $1
add $3, $4, 67
addi $4, $0, 13
sub $3, $4, $3
addi $4, $2, 13
add $3, $3, $4
add $3, $3, $4
```

Reading MIPS Code Practice
Reading MIPS Code Practice - Solutions

What formula do the following programs compute? Assume the value for x is in $1, the value for y is in $2, and the value for z is in $3 at the end.

```
addi $3, $1, -2
sub $3, $3, $2
addi $4, $0, 67
sub $3, $4, $3
```

\[z = 67 - ((x - 2) - y) \]

```
add $3, $1, $1
add $3, $3, $1
addi $4, $2, 13
add $3, $3, $4
add $3, $3, $4
```

\[z = 3x + 2(y + 13) \]
Assignment Reminders

● Always test your code on the university servers before you hand it in!
● Hand in the .asm file (*not the .mips file*) for programming questions.
● Submit a .txt XOR a .pdf for all other questions.
 ○ Do not submit both for the same question!
 ○ You may submit a .pdf for one question and a .txt for a different question.