ADTs representing structure

We have seen ADTs where:

- There is no relation among items.
- Items are orderable types of data.
- Order is imposed by operations (e.g. ADT Stack).

Here, we specify more complex structure as we add to the ADT.
Tree review

Which of these trees are the same?

[Diagram of four trees, each with nodes labeled A, B, C, D arranged differently]
Basic definitions

A **tree** is formed of **nodes** connected by **edges**. (This is not the same as a node in a linked list.)

In a **rooted tree**, one node is designated as the **root** of the tree.

In a drawing where the root is at the top, an edge connects a **parent** to a **child**, where the parent is the node closer to the root.

Nodes that share a parent are **siblings**.

A node without children is a **leaf**; a node that is not a leaf is an **internal node**.

A node’s parent, its parent’s parent, and so on up to the root are its **ancestors**; a node’s children, children’s children, and so on are its **descendants**.

A node and all its descendants form the **subtree rooted at** that node.
Definitions for rooted trees

A tree is **unordered** if there is no order specified on the children of a node, and **ordered** otherwise.

A **binary tree** is a tree in which each parent has at most two children and each child is specified as either a **left child** or a **right child**. The subtree rooted at the left child is the **left subtree** and the subtree rooted at the right child is the **right subtree**.

The **depth of a node** is the number of ancestors of the node; a root is thus at depth 0.

The **height of a node** is determined by considering, in the subtree rooted at the node, the maximum number of edges passed going from a leaf to the node. A leaf has height 0.

The **height of a tree** is the height of the root of the tree.
Tree traversals

A **tree traversal** is an ordering of the nodes in the tree.

- In a **postorder traversal**, each node appears after its children.
- In a **preorder traversal**, each node appears before its children.
- In a **level order traversal**, nodes appear in increasing order of depth.
- In an **inorder traversal** (only in a binary tree), for each node all nodes in the left subtree come before the node and all nodes in the right subtree come after the node.
Traversing example

```
3

5
8 12
9 14

10
13
15

11
18
```

CS 234 Module 5
ADTS with items related by structure
Applications of trees

- family tree (with one parent), language family tree, evolutionary tree
- hierarchy in a business
- organization of a text document (chapters, etc.)
- parse tree
- arithmetic expression
In a decision tree representing an algorithm, each node is labeled with a decision being made, the children of a node correspond to the different choices depending on the outcome of the decision, and each leaf corresponds to a possible outcome of the algorithm.
Possible operations for trees

Basic operations:
- Create()
- IsEmpty(T)

Returning a value:
- ValueAtNode(T, n)

Returning more than one value:
- PostOrderValues(T)
- PreOrderValues(T)
- LevelOrderValues(T)

Returning a node:
- FindNode(T, value)
- Root(T)
- Parent(T, n)

Returning more than one node:
- Children(T, n)
- Siblings(T, n)
- Descendants(T, n)
- Ancestors(T, n)
- Leaves(T)
- PostOrderNodes(T)
- PreOrderNodes(T)
- LevelOrderNodes(T)
More operations

Changing the tree:
- ReplaceValue(T, n, newValue)
- SwapSubtrees(T, n1, n2)
- AddNode(T, p, value)
- DeleteNode(T, n)
- DeleteSubtree(T, n)

Issues to resolve
- Returning multiple values or nodes (Specify ADT; give details in code interface.)
- Specifying the result of deleting a node (Multiple options.)
ADT Binary Tree

Preconditions: For all B is a binary tree, n is a node in B; for Root B is nonempty; for AddNode either p is in B and side is Left or Right or p and side are both None; for DeleteLeaf n is a leaf.

Postconditions: Mutation by AddNode (replace previous subtree or root) and DeleteLeaf (delete leaf).

<table>
<thead>
<tr>
<th>Name</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create()</td>
<td>a new empty binary tree</td>
</tr>
<tr>
<td>IsEmpty(B)</td>
<td>true if empty, else false</td>
</tr>
<tr>
<td>Root(B)</td>
<td>root of B</td>
</tr>
<tr>
<td>Parent(B, n)</td>
<td>parent if any, else false</td>
</tr>
<tr>
<td>LeftChild(B, n)</td>
<td>left child if any, else false</td>
</tr>
<tr>
<td>RightChild(B, n)</td>
<td>right child if any, else false</td>
</tr>
<tr>
<td>AddNode(B, p, value, side)</td>
<td>added node</td>
</tr>
<tr>
<td>DeleteLeaf(B, n)</td>
<td></td>
</tr>
</tbody>
</table>
Example of use of ADT Binary Tree operations

```
tree ← Create()
root ← AddNode(tree, None, apple, None)
leftchild ← AddNode(tree, root, guava, Left)
rightchild ← AddNode(tree, root, peach, Right)
grandchild ← AddNode(tree, leftchild, mango, Right)
print(Root(tree) == root)
print(Parent(tree, grandchild) == leftchild)
print(LeftChild(tree, leftchild) == leftchild)
print(RightChild(tree, leftchild) == grandchild)
DeleteLeaf(tree, rightchild)
print(RightChild(tree, root))
```
Linked implementation of ADT Binary Tree

Data structure:

- Variable *root* pointing to root node, if any.
- Nodes storing data items and three pointers *parent* (to parent), *left* (to left child), and *right* (to right child).

Worst-case running times of operations are all in $\Theta(1)$. Cost of searching for a node from the root depends on depth.

Note: Node has two meanings here.
Example illustrated

tree ← Create()
root ← AddNode(tree, None, apple, None)
leftchild ← AddNode(tree, root, guava, Left)
rightchild ← AddNode(tree, root, peach, Right)
grandchild ← AddNode(tree, leftchild, mango, Right)
print(Root(tree) == root)
print(Parent(tree, grandchild) == leftchild)
print(LeftChild(tree, leftchild) == leftchild)
print(RightChild(tree, leftchild) == grandchild)
DeleteLeaf(tree, rightchild)
print(RightChild(tree, root))
Computing siblings - two views

User view:

- Use ADT operations.
- Use Parent to find parent.
- Use LeftChild and RightChild to find children of parent.
- If there is only one, return node itself (no sibling).
- If there are two, return the one which is not the node itself.

Provider view:

- Create a new ADT operation.
- Use the data structure directly.
- Use parent pointer to find parent.
- Use left and right pointers to find children of parent.
- If there is only one, return node itself (no sibling).
- If there are two, return the one which is not the node itself.
Array implementation of a ADT Binary Tree

Data structure:

- Array storing values in level-order order as if all nodes were present.
- Variable `lastleaf` with the last index storing an element.
Details of implementation

Parent, children, and siblings can be determined from index in $\Theta(1)$ time:

- For node at index p, index of left child is $2p + 1$
- For node at index p, index of right child is $2p + 2$
- For node at index p, index of parent is $\lfloor (p - 1)/2 \rfloor$
- For node at odd index p, index of sibling is $p + 1$.
- For node at even positive index p, index of sibling is $p - 1$.
More terminology for binary trees

In a **perfect** binary tree, each node has zero or two children and all leaves are at the same depth.

In a **complete** binary tree every level, except possibly the last, is completely filled, and all nodes on the last level are as far to the left as possible.

![Diagram of perfect and complete binary trees]
ADT Ordered Tree

Preconditions: For all O is an ordered tree, n is a node in O; for Root O is nonempty; for AddNode p is in B and s is its child, p is in B and s is None, or p and s are both None; for DeleteLeaf n is a leaf.

Postconditions: Mutation by AddNode (add node with value as next sibling of s, as first child of p if s is None, or as root if p and s are both None) and DeleteLeaf (delete leaf).

(Create(), IsEmpty(O), Root(O), Parent(O, n), and DeleteLeaf(O, n) like in ADT Binary Tree)

<table>
<thead>
<tr>
<th>Name</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children(O, n)</td>
<td>all children (ADT List)</td>
</tr>
<tr>
<td>OneChild(O, n, i)</td>
<td>ith child if any, else false</td>
</tr>
<tr>
<td>AddNode(O, p, value, s)</td>
<td>added node</td>
</tr>
</tbody>
</table>
Devising a linked implementation

Draw node with pointers to children
- label/item
- pointer to parent
- pointer to first child
- pointer to second child
- more pointers

Reject idea except for special case when we know there is a small number of children (maybe more than two but less than unlimited).

Recall what we did in first-year CS when we wanted to store an unbounded number of values together (instead of a structure, we used a list).
Linked implementation of ADT Ordered Tree

Data structure:

- Variable `root` pointing to root node, if any.
- Nodes storing data items and three pointers `prev` (to parent if first child or previous sibling otherwise), `next` (to next sibling), and `first` (to first child).

![Diagram of tree node with prev, first, and next pointers]
Implementing Parent

found ← False
current ← x
while not found
 y ← current.prev
 if current == y.first
 found ← True
 else
 current = y
return y
Computing next sibling: two views

User view:

- Use ADT operations.
- Use Parent to find parent.
- Use Children to find children.
- Scan children to determine next sibling.

Provider view:

- Create a new ADT operation.
- Use the data structure directly.
- Use next pointer to find next sibling.
Defining and implementing ADT Unordered Tree

ADT definition:
- Similar to ADT Ordered Tree
- Specify only parent, not sibling, when adding a node
- Return ADT Set instead of ADT List of children

Data structures:
- Same data structure as for ADT Ordered Tree
- Adapt algorithms to exploit fact that order of children is not significant
Customizing data structures for trees

Customizing nodes:

- Add extra fields with more information.
- Add extra pointers to connect information.

Variations:

- Store all data in leaves, using internal nodes for search.
- Thread nodes, e.g. as an in-order traversal, by adding an extra pointer from each node to another node in the tree.

Note: Some extra information may be hard to maintain, so it is best when additions and deletions are rare. (Examples: threading, storage of depth or height.)