Algorithm Analysis

- Computation Resources
- Big-O Notation
- Time Complexity
 - Python List
 - Python Dictionary
Algorithms

- Algorithms are designed to solve problems.
 - generic, step-by-step list of instructions
- A problem can have multiple solutions.

How do we determine which solution is the most efficient?
Computing Resources

• space or memory
 • Typically dictated by the problem instance

• execution time (running time)
 • actual time required for the program to compute its result
 • the starting time and ending time wrt the system used
Example

• Problem: Computing the sum of the first n integers.

• Observation:
 • Iterative solutions seem to be doing more work (repeated steps, longer)
 • The time required for iterative solution increase with the value of n
Problem

• Actual execution time depends on:
 • particular machine
 • program
 • time of day
 • compiler
 • programming language
 • ...
Example Algorithm

- Given a matrix of size \(n \times n \), compute the:
 - sum of each row of a matrix.
 - overall sum of the entire matrix.
Example Algorithm (v.1)

- How many addition operations?

\[
T(n) = 2n(n) = 2n^2
\]

\[
\text{rowSum} = \text{Array}(n)
\]

\[
\text{totalSum} = 0
\]

\[
\begin{align*}
\text{for } i \text{ in range(} n \text{)} : \\
& \quad \text{rowSum}[i] = 0 \\
\text{for } j \text{ in range(} n \text{)} : \\
& \quad \text{rowSum}[i] = \text{rowSum}[i] + \text{matrix}[i,j] \\
& \quad \text{totalSum} = \text{totalSum} + \text{matrix}[i,j]
\end{align*}
\]
Example Algorithm (v.2)

• How many additions are performed?

\[
T(n) = (n + 1) n = n^2 + n
\]

```python
rowSum = Array(n)
totalSum = 0

for i in range(n):
    rowSum[i] = 0

for j in range(n):
    for i in range(n):
        rowSum[i] = rowSum[i] + matrix[i,j]
    totalSum = totalSum + rowSum[i]
```
Compare the Results

- Number of additions: \(v_1: 2n^2 \quad v_2: n^2 + n \)
- Second version has fewer additions (\(n > 1 \))
 - Will execute faster than the first.
 - Difference will not be significant.
Growth Rates

- As n increases, both algorithms increase at approx. the same rate:

<table>
<thead>
<tr>
<th>n</th>
<th>$2n^2$</th>
<th>$n^2 + n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>200</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>20,000</td>
<td>10,100</td>
</tr>
<tr>
<td>1000</td>
<td>2,000,000</td>
<td>1,001,000</td>
</tr>
<tr>
<td>10,000</td>
<td>200,000,000</td>
<td>100,010,000</td>
</tr>
<tr>
<td>100,000</td>
<td>20,000,000,000</td>
<td>10,000,100,000</td>
</tr>
</tbody>
</table>
Big-O Notation

• No need to count precise number of steps
• Classify algorithms by order of magnitude
 • execution time
 • space requirements

Can approximate actual number of steps or actual storage in terms of variable-sized data sets.
Big-O Definition

- The order of magnitude: Big-O notation.
- Then, the algorithm has a time-complexity of or executes “on the order of” $f(n)$
 - We use the notation: $O(f(n))$
 - Big-O is intended for large values of n.

$f(n)$ indicates the rate of growth at which the run time increases as the input size increases.
Classes of Algorithms

• Many algorithms have a time-complexity selected from a common set of functions.

<table>
<thead>
<tr>
<th>$f()$</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
</tr>
<tr>
<td>$\log n$</td>
<td>logarithmic</td>
</tr>
<tr>
<td>n</td>
<td>linear</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>log linear</td>
</tr>
<tr>
<td>n^2</td>
<td>quadratic</td>
</tr>
<tr>
<td>n^3</td>
<td>cubic</td>
</tr>
<tr>
<td>a^n</td>
<td>exponential</td>
</tr>
</tbody>
</table>
Classes of Algorithms
Different Cases

- Some algorithms have different run times for different sets of inputs of the same size.
 - best case
 - worst case
 - average case

- Typically be identified by:
 - event-controlled loop
 - conditional statement
Different Cases

```python
def findNeg( intSeq ):
    n = len( intSeq )
    for i in range( n ) :
        if intSeq[i] < 0 :
            return i
    return None

L = [ 72, 4, 90, 56, 12, 67, 43, 17, 2, 86, 33 ]
p = findNeg( L )

L = [ -12, 50, 4, 67, 39, 22, 43, 2, 17, 28 ]
p = findNeg( L )
```
Evaluating Python Code

- Basic operations only require constant time:
 - \(x = 5 \)
 - \(z = x + y \times 6 \)
 - \textbf{if} \(x > 0 \) \textbf{and} \(x < 100 \)

- What about function calls?
 \[y = \text{ex1}(n) \]
Evaluation Focus on

• Repetition
• Selection statements
• Function and method calls
def ex1(n):
 count = 0
 for i in range(n):
 count += i
 return count
def ex2(n):
 count = 0
 for i in range(n):
 count += 1
 for j in range(n):
 count += 1
 return count
def ex3(n):
 count = 0
 for i in range(n):
 for j in range(n):
 count += 1
 return count
def ex4(n):
 count = 0
 for i in range(n):
 for j in range(25):
 count += 1
 return count
Code Evaluation #5

```python
def ex5(n):
    count = 0
    for i in range(n):
        for j in range(i+1):
            count += 1
    return count
```
def ex6(n):
 count = 0
 i = n
 while i >= 1:
 count += 1
 i = i // 2
 return count
def ex7(n):
 count = 0
 for i in range(n):
 count += ex6(n)
 return count
The Python List

- We used the list to implement many of our ADTs.
- Their efficiency depends on the efficiency of Python's list.
Python List: Traversal

- Iterates over the contiguous elements of the underlying array.

```python
# Sum the elements of a list.
sum = 0
for value in valueList:
    sum = sum + value

# Alternate version.
sum = 0
n = len(valueList)
for i in range(n):
    sum = sum + valueList[i]
```
Python List: Allocation

- Creating a non-empty list is not constant.

```python
temp = list()
listX = [0] * n
valueList = [4, 8, 20, 2, 15, 89, 60, 75]
```
Python List: Appending

- When space is available, the item is stored in the next slot.

What if the underlying array is full?
Python List: Expanding The List

- Assume the list contains \(n \) items

Step 1: create a new array, double the size.

Step 2: copy the items from original array to the new array.
Python List: Expanding The List

Step 3: replace the original array with the new array.

Original array:

```
pyList
4  12  2  34  17  50  18  64
```

New array:

```
pyList
4  12  2  34  17  50  18  64  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot
```

Step 4: store value 6 in the next slot of the new array.

```
pyList
4  12  2  34  17  50  18  64  6  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot
```
Python List: Inserting Items

- Some items have to be shifted to make room for the new item.

```python
pyList.insert( 3, 79 )
```
Python List: Extending

- Adds the contents of a source list to the end of the destination list.
Python List: Time-Complexities

<table>
<thead>
<tr>
<th>List Operation</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = \text{list}())</td>
<td>(O(1))</td>
</tr>
<tr>
<td>(\text{len}(v))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>(v = [0] * n)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(v[i] = x)</td>
<td>(O(1))</td>
</tr>
<tr>
<td>(v.\text{append}(x))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(v.\text{extend}(w))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(v.\text{insert}(x))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(v.\text{pop}())</td>
<td>(O(n))</td>
</tr>
<tr>
<td>traversal</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>
Python Dictionaries

<table>
<thead>
<tr>
<th>Dictionary Operation</th>
<th>Average Case</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>get item</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>set item</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>delete item</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>add item</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>contains (in)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>traversal</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>