Search Trees
Search Trees

- The tree structure can be used for searching.
 - Each node contains a search key as part of its data or **payload**.
 - Nodes are organized based on the relationship between the keys.
- Search trees can be used to implement various types of containers.
 - Most common use is with the Map ADT.
A binary tree in which each node contains a search key and the tree is structured such that for each interior node V:

- All keys less than the key in node V are stored in the left subtree of V.
- All keys greater than the key in node V are stored in the right subtree of V.

Binary Search Tree (BST)
BST Example

- Consider the example tree
We use an unique name to distinguish this version from others in the chapter.
class BSTMap:
 def __init__(self):
 self._root = None
 self._size = 0

 def __len__(self):
 return self._size

 def __iter__(self):
 return _BSTreeIterator(self._root)
...

Storage class for the binary search tree nodes.
class _BSTNode:
 def __init__(self, key, data):
 self.key = key
 self.data = data
 self.left = None
 self.right = None
BST – Searching

- A search begins at the root node.
 - The target is compared to the key at each node.
 - The path depends on the relationship between the target and the key in the node.

```
compare target to x
if target < x search the left subtree
if target > x search the right subtree
```
BST – Search Example

- Suppose we want to search for 29 in our BST.
BST – Search Example

- What if the key is not in the tree? Search for key 68 in our BST.
class BSTMap:

 def __contains__(self, key):
 return self._bstSearch(self._root, key) is not None

 def valueOf(self, key):
 node = self._bstSearch(self._root, key)
 assert node is not None, "Invalid map key."
 return node.value

 def _bstSearch(self, subtree, target):
 if subtree is None:
 return None
 elif target < subtree.key:
 return self._bstSearch(subtree.left)
 elif target > subtree.key:
 return self._bstSearch(subtree.right)
 else:
 return subtree
BST – Min or Max Key

- Finding the minimum or maximum key within a BST is similar to the general search.
 - Where might the smallest key be located?
 - Where might the largest key be located?
The helper method below finds the node containing the minimum key.

class BSTMap :
 # ...
 def _bstMinimum(self, subtree):
 if subtree is None :
 return None
 elif subtree.left is None :
 return subtree
 else :
 return self._bstMinimum(subtree.left)
BST – Insertions

- When a BST is constructed, the keys are added one at a time. As keys are inserted
 - A new node is created for each key.
 - The node is linked into its proper position within the tree.
 - The search tree property must be maintained.
Building a BST

- Suppose we want to build a BST from the key list: 60 25 100 35 17 80

(a) Insert 60.

(b) Insert 25.

(c) Insert 100.

(d) Insert 35.

(e) Insert 17.

(f) Insert 80.
BST – Insertion

- Building a BST by hand is easy. How do we insert an entry in program code?
 - What happens if we use the search method from earlier to search for key 30?
BST – Insertion

- We can insert the new node where the search fell off the tree.
BST – Insert Implementation

```python
class BSTMap:
    # ...
    def add(self, key, value):
        node = self._bstSearch(key)
        if node is not None:
            node.value = value
            return False
        else:
            self._root = self._bstInsert(self._root, key, value)
            self._size += 1
            return True

    def _bstInsert(self, subtree, key, value):
        if subtree is None:
            subtree = _BSTMapNode(key, value)
        elif key < subtree.key:
            subtree.left = self._bstInsert(subtree.left, key, value)
        elif key > subtree.key:
            subtree.right = self._bstInsert(subtree.right, key, value)
        return subtree
```

`bstmap.py`
BST – Insert Steps

- Add 30 to our sample BST.

(a) bstInsert(root, 30)
(b) bstInsert(subtree.left, key)
(c) bstInsert(subtree.right, key)
BST – Insert Steps

(d) bstInsert(subtree.left, key)
(e) subtree = TreeNode(key)
(f) subtree.left = bstInsert(...)

(g) subtree.right = bstInsert(...)
(h) subtree.left = bstInsert(...)
(i) root = bstInsert(...)
BST – Deletions

- Deleting a node from a BST is a bit more complicated.
 - Locate the node containing the node.
 - Delete the node.

- When a node is removed, the remaining nodes must preserve the search tree property.
BST – Deletions

- There are three cases to consider:
 - the node is a leaf.
 - the node has a single child
 - the node has two children.
BST – Delete Leaf Node

- Removing a leaf node is the easiest case.
 - Suppose we want to remove 23.
BST – Delete Interior Node

- Removing an interior node with one child.
 - Suppose we want to remove 41.
 - We cannot simply unlink the node.
BST – Delete Interior Node

- After locating the node to be removed, it's child must be linked to it's parent.
BST – Delete Interior Node

- The most difficult case is deleting a node with two children.
 - Suppose we want to delete node 12.
 - Which child should be linked to the parent?
BST – Delete Interior Node

- Based on the search tree property, each node has a logical predecessor and successor.
 - For node 12, those are 4 and 23.
BST – Delete Interior Node

- We can replace to be deleted with either its logical successor or predecessor.
 - Both will either be a leaf or an interior node with one child.
 - We already know how to remove those nodes.
BST – Delete Interior Node

- Removing an interior node with two children requires 4 steps:
 - (1) Find the node to be deleted, N.
BST – Delete Interior Node

- (2) Find the successor, S, of node N.
BST – Delete Interior Node

- (3) Copy the payload from node S to node N.
BST – Delete Interior Node

- (4) Remove node S from the tree.
BST – Delete Interior Node

- Removing an interior node with two children requires 4 steps:
 - Find the node to be deleted, N.
 - Find the logical successor, S, of node N.
 - Copy the payload from node S to node N.
 - Remove node S from the tree.
class BSTMap :
 # ...
 def remove(self, key):
 assert key in self, "Invalid map key."
 self._root = self._bstRemove(self._root, key)
 self._size -= 1
class BSTMap:
 # ...
 def _bstRemove(self, subtree, target):
 if subtree is None:
 return subtree
 elif target < subtree.key:
 subtree.left = self._bstRemove(subtree.left, target)
 return subtree
 elif target > subtree.key:
 subtree.right = self._bstRemove(subtree.right, target)
 return subtree
 else:

class BSTMap :
...
def _bstRemove(self, subtree, target):

else :
 if subtree.left is None and subtree.right is None :
 return None
 elif subtree.left is None or subtree.right is None :
 if subtree.left is not None :
 return subtree.left
 else :
 return subtree.right
else
 successor = self._bstMinimum(subtree.right)
 subtree.key = successor.key
 subtree.value = successor.value
 subtree.right = self._bstRemove(subtree.right, successor.key)
return subtree
BST – Efficiency

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>_bstSearch(root, k)</td>
<td>O(n)</td>
</tr>
<tr>
<td>_bstMinimum(root)</td>
<td>O(n)</td>
</tr>
<tr>
<td>_bstInsert(root, k)</td>
<td>O(n)</td>
</tr>
<tr>
<td>_bstDelete(root, k)</td>
<td>O(n)</td>
</tr>
<tr>
<td>traversal</td>
<td>O(n)</td>
</tr>
</tbody>
</table>