Final Review
When and Where

• When
 • December 8th from 7:30pm to 10:00pm

• Where
 • STC 1012
General Information

• Question types are similar to midterm exam types
 • multiple choices 20%
 • short answers 20%
 • Others on design, analysis, implementation and application of data structures and algorithms
• ~ 1/3 on topics before midterm
• ~ 2/3 on topics after midterm
• Office hours:
 • Dec 5 and Dec 7: 12pm – 2pm, DC 2129
 • Dec 6: 1:30 – 2:30 pm, Dec 8: 2pm – 3pm, MC 4065
Overview

• List of Data Structures (ADTs)
 • Linear Data Structures
 • Non-linear Data Structures

• Operations on data structures

• Sorting Algorithms

• Recursion
Linear Data Structures

• Array
 • unsorted array
 • sorted array

• Python List
 • unsorted Python List
 • sorted Python List

• Linked Lists (sorted and unsorted)
 • Singly linked list
 • Doubly linked list
 • Circular linked list

• Stack

• Queue
 • Priority Queue
Non-Linear Data Structures

• Hash Table
 • Open Addressing
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
 • Separate Chaining

• Tree
 • Binary Tree
 • Full, Perfect, Complete (Heap)
 • Binary Search Tree
 • Self-Balancing Binary Search Tree: AVL Tree

• Graph
 • Adjacency Matrix
 • Adjacency Lists
Common Operations on Data Structures

- Insertion
- Deletion
- Search
 - Any
 - All (traversal)
 - Minimum
 - Maximum
 - Predecessor
 - Successor
 - ……

Consider building up a table for
(Data Structures x Operations)

Ask yourself:
1. Is the data structure implemented by other data structure(s)?
2. do you know how to achieve Operation x on Data Structure y implemented by Data Structure z?
3. 2. do you know the efficiency of Operation x on Data Structure y implemented by Data Structure z?
4. …
Sorting Algorithms

• Bubble Sort
• Selection Sort
• Insertion Sort
• Merge Sort
• Quick Sort
• Radix Sort
• Heap Sort
• BST Sort

Ask yourself:
1. How does it work?
2. What data structure(s) fit this sorting algorithm? Is there any difference?
3. Is it a in-place sorting algorithm?
4. What is its time complexity?
5. How much extra space does it need?
6. ...
Recursion

• How to use recursion to solve problems?
 • divide problem into smaller problems
 • find base case
 • find recursive case
 • make progress towards the base case

• Use recursive call trees to help with tracing function calls

• Single recursion vs. Multiple Recursion

• Recurrence Equation

• Applications:
 • Binary Search
 • Towers of Hanoi