Abstract Data Types

Abstract Data Type (ADT): A description of *information* and a collection of *operations* on that information.

The information is accessed only through the operations.

We can have various *realizations* of an ADT, which specify:

- How the information is stored (*data structure*)
- How the operations are performed (*algorithms*)

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a *priority*) with operations

- *insert:* inserting an item tagged with a priority
- *deleteMax:* removing the item of highest priority

`deleteMax` is also called *extractMax*.

Applications: typical “todo” list, simulation systems

The above definition is for a *maximum-oriented* priority queue. A *minimum-oriented* priority queue is defined in the natural way, by replacing the operation *deleteMax* by *deleteMin*.
Realizations of Priority Queues

Attempt 1: Use unsorted arrays
- insert: $O(1)$
- deleteMax: $O(n)$
Using unsorted linked lists is identical.

Attempt 2: Use sorted arrays
- insert: $O(n)$
- deleteMax: $O(1)$
Using sorted linked-lists is identical.

Third Realization: Heaps

A heap is a certain type of binary tree.

Recall binary trees:
A binary tree is either
- empty, or
- consists of three parts: a node and two binary trees (left subtree and right subtree).

Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.

Heaps

A max-heap is a binary tree with the following two properties:

- Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.
- Heap-order Property: For any node i, key (priority) of parent of i is larger than or equal to key of i.

A min-heap is the same, but with opposite order property.

Lemma: Height of a heap with n nodes is $\Theta(\log n)$.
Insertion in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *bubble-up*:

```
bubble-up(v)
v: a node of the heap
1. while parent(v) exists and key(parent(v)) < key(v) do
2. swap v and parent(v)
3. v ← parent(v)
```

The new item bubbles up until it reaches its correct place in the heap.

Time: $O(\text{height of heap}) = O(\log n)$.

deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a *bubble-down*:

```
bubble-down(v)
v: a node of the heap
1. while v is not a leaf do
2. u ← child of v with largest key
3. if key(u) > key(v) then
4. swap v and u
5. v ← u
6. else
7. break
```

Time: $O(\text{height of heap}) = O(\log n)$.

Priority Queue Realization Using Heaps

- **heapInsert**(A, x)
 - A: an array-based heap, x: a new item
 - $\text{size}(A) ← \text{size}(A) + 1$
 - $A[\text{size}(A) - 1] ← x$
 - $\text{bubble-up}(A, \text{size}(A) - 1)$

- **heapDeleteMax**(A)
 - A: an array-based heap
 - $\text{max} ← A[0]$
 - $\text{swap}(A[0], A[\text{size}(A) - 1])$
 - $\text{size}(A) ← \text{size}(A) - 1$
 - $\text{bubble-down}(A, 0)$
 - $\text{return} \ \text{max}$

Insert and deleteMax: $O(\log n)$
Building Heaps

Problem statement: Given \(n \) items \((A[0 \cdots n - 1])\) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

```
heapify1(A)
A: an array
1. initialize H as an empty heap
2. for \( i \leftarrow 0 \) to \( \text{size}(A) - 1 \) do
3.   heapInsert(H, A[i])
```

This corresponds to going from \(0 \cdots n - 1 \) in \(A \) and doing bubble-ups
Worst-case running time: \(\Theta(n \log n) \).

Storing Heaps in Arrays

Let \(H \) be a heap (binary tree) of \(n \) items and let \(A \) be an array of size \(n \).
Store root in \(A[0] \) and continue with elements level-by-level from top to bottom, in each level left-to-right.

It is easy to find parents and children using this array representation:
- the left child of \(A[i] \) (if it exists) is \(A[2i+1] \),
- the right child of \(A[i] \) (if it exists) is \(A[2i+2] \),
- the parent of \(A[i] \) \((i \neq 0)\) is \(A[\lfloor i/2 \rfloor] \) \((A[0] \) is the root node).

Building Heaps

Problem statement: Given \(n \) items \((A[0 \cdots n - 1])\) build a heap containing all of them.

Solution 2: Using bubble-downs instead:

```
heapify(A)
A: an array
1. \( n \leftarrow \text{size}(A) - 1 \)
2. for \( i \leftarrow \lfloor n/2 \rfloor \) downto 0 do
3.   bubble-down(A, i)
```

A careful analysis yields a worst-case complexity of \(\Theta(n) \).
A heap can be built in linear time.
Using a Priority Queue to Sort

\[PQ - \text{Sort}(A) \]
1. initialize \(PQ \) to an empty priority queue
2. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
 3. \(PQ.\text{insert}(A[i], A[i]) \)
4. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
5. \(A[n - 1 - i] \leftarrow PQ.\text{deleteMax}() \)

HeapSort

\[\text{HeapSort}(A) \]
1. initialize \(H \) to an empty heap
2. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
 3. \(\text{heapInsert}(H, A[i]) \)
4. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
5. \(A[n - 1 - i] \leftarrow \text{heapDeleteMax}(H) \)

Running time of HeapSort: \(O(n \log n) \)

Selection

Problem Statement: The \(k \)-th max problem asks to find the \(k \)-th largest item in an array \(A \) of \(n \) numbers.

Solution 1: Make \(k \) passes through the array, deleting the maximum number each time.
Complexity: \(\Theta(kn) \).

Solution 2: First sort the numbers. Then return the \(k \)-th largest number.
Complexity: \(\Theta(n \log n) \).

Solution 3: Scan the array and maintain the \(k \) largest numbers seen so far in a min-heap
Complexity: \(\Theta(n \log k) \).

Solution 4: Make a max-heap by calling \(\text{heapify}(A) \). Call \(\text{deleteMax}(A) \) \(k \) times.
Complexity: \(\Theta(n + k \log n) \).