Abstract Data Types

Abstract Data Type (ADT): A description of information and a collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
- How the information is stored (data structure)
- How the operations are performed (algorithms)

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a priority) with operations
- insert: inserting an item tagged with a priority
- deleteMax: removing the item of highest priority

deleteMax is also called extractMax.

Applications: typical “todo” list, simulation systems

The above definition is for a maximum-oriented priority queue. A minimum-oriented priority queue is defined in the natural way, by replacing the operation deleteMax by deleteMin.

Realizations of Priority Queues

Attempt 1: Use unsorted arrays
- insert: $O(1)$
- deleteMax: $O(n)$

Using unsorted linked lists is identical.

Attempt 2: Use sorted arrays
- insert: $O(n)$
- deleteMax: $O(1)$

Using sorted linked-lists is identical.
Third Realization: Heaps

A *heap* is a certain type of binary tree.

Recall binary trees:
A binary tree is either
- empty, or
- consists of three parts: a node and two binary trees (left subtree and right subtree).

Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.

Heaps

A *max-heap* is a binary tree with the following two properties:

1. **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.
2. **Heap-order Property:** For any node i, key (priority) of parent of i is larger than or equal to key of i.

A *min-heap* is the same, but with opposite order property.

Lemma: Height of a heap with n nodes is $\Theta (\log n)$.

Insertion in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *bubble-up*:

 \[
 \text{bubble-up}(v) \\
 v: \text{a node of the heap} \\
 1. \text{while parent}(v) \text{ exists and } key(parent(v)) < key(v) \text{ do} \\
 2. \text{swap } v \text{ and } parent(v) \\
 3. v \leftarrow parent(v)
 \]

 The new item bubbles up until it reaches its correct place in the heap.

 Time: $O(\text{height of heap}) = O(\log n)$.

deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a *bubble-down*:

 \[
 \text{bubble-down}(v) \\
 v: \text{a node of the heap} \\
 1. \text{while } v \text{ is not a leaf do} \\
 2. u \leftarrow \text{child of } v \text{ with largest key} \\
 3. \text{if } key(u) > key(v) \text{ then} \\
 4. \text{swap } v \text{ and } u \\
 5. v \leftarrow u \\
 6. \text{else} \\
 7. \text{break}
 \]

 Time: $O(\text{height of heap}) = O(\log n)$.

Priority Queue Realization Using Heaps

heapInsert(A, x)
A: an array-based heap, x: a new item
1. size(A) ← size(A) + 1
2. A[size(A) − 1] ← x
3. bubble-up(A, size(A) − 1)

heapDeleteMax(A)
A: an array-based heap
1. max ← A[0]
2. swap(A[0], A[size(A) − 1])
3. size(A) ← size(A) − 1
4. bubble-down(A, 0)
5. return max

Insert and deleteMax: O(log n)

Building Heaps

Problem statement: Given n items (in A[0 ··· n − 1]) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

heapify1(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to size(A) − 1 do
3. heapInsert(H, A[i])

This corresponds to going from 0 ··· n − 1 in A and doing bubble-ups
Worst-case running time: Θ(n log n).

Solution 2: Using bubble-downs instead:

heapify(A)
A: an array
1. n ← size(A) − 1
2. for i ← ⌊n/2⌋ downto 0 do
3. bubble-down(A, i)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

Storing Heaps in Arrays

Let H be a heap (binary tree) of n items and let A be an array of size n. Store root in A[0] and continue with elements level-by-level from top to bottom, in each level left-to-right.

It is easy to find parents and children using this array representation:

- the left child of A[i] (if it exists) is A[2i + 1],
- the right child of A[i] (if it exists) is A[2i + 2],
- the parent of A[i] (i ≠ 0) is A[⌊i−1/2⌋] (A[0] is the root node).
Using a Priority Queue to Sort

\[PQ - \text{Sort}(A) \]
1. initialize \(PQ \) to an empty priority queue
2. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
3. \(PQ.\text{insert}(A[i], A[i]) \)
4. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
5. \(A[n - 1 - i] \leftarrow PQ.\text{deleteMax}() \)

HeapSort

\[\text{HeapSort}(A) \]
1. initialize \(H \) to an empty heap
2. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
3. \(\text{heapInsert}(H, A[i]) \)
4. \(\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \)
5. \(A[n - 1 - i] \leftarrow \text{heapDeleteMax}(H) \)

Running time of HeapSort: \(O(n \log n) \)

Selection

Problem Statement: The \(k \)-th-max problem asks to find the \(k \)-th largest item in an array \(A \) of \(n \) numbers.

Solution 1: Make \(k \) passes through the array, deleting the maximum number each time.

Complexity: \(\Theta(kn) \).

Solution 2: First sort the numbers. Then return the \(k \)-th largest number.

Complexity: \(\Theta(n \log n) \).

Solution 3: Scan the array and maintain the \(k \) largest numbers seen so far in a min-heap

Complexity: \(\Theta(n \log k) \).

Solution 4: Make a max-heap by calling \(\text{heapify}(A) \). Call \(\text{deleteMax}(A) \) \(k \) times.

Complexity: \(\Theta(n + k \log n) \).