Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Dictionary ADT

A dictionary is a collection of items, each of which contains
- a key
- some data,
and is called a key-value pair (KVP). Keys can be compared and are (typically) unique.

Operations:
- search(k)
- insert(k, v)
- delete(k)
- optional: join, isEmpty, size, etc.

Examples: symbol table, license plate database

Elementary Implementations

Common assumptions:
- Dictionary has n KVPs
- Each KVP uses constant space
- Comparing keys takes constant time

Unordered array or linked list
- search $\Theta(n)$
- insert $\Theta(1)$
- delete $\Theta(n)$ (need to search)

Ordered array
- search $\Theta(\log n)$
- insert $\Theta(n)$
- delete $\Theta(n)$

Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in $T.left$ is less than the root key.
Every key k in $T.right$ is greater than the root key.
BST Search and Insert

- **search**\((k) \)**: Compare \(k \) to current node, stop if found, else recurse on subtree unless it’s empty.

- **insert**\((k,v) \)**: Search for \(k \), then insert \((k,v) \) as new node.

Example:

```
15  6  10  8  14
  25
  23  29
  27  50
```

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up.
- Else, swap with **successor or predecessor** node and then delete.

Height of a BST

- **search**, **insert**, **delete** all have cost \(\Theta(h) \), where \(h = \) height of the tree = max. path length from root to leaf.

If \(n \) items are inserted one-at-a-time, how big is \(h \)?

- **Worst-case:**
- **Best-case:**
- **Average-case:**

AVL Trees

Introduced by Adel’son-Vel’skiĭ and Landis in 1962, an **AVL Tree** is a BST with an additional structural property:

- The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be \(-1\).)

At each non-empty node, we store \(\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\} \):

- \(-1\) means the tree is **left-heavy**
- \(0\) means the tree is **balanced**
- \(1\) means the tree is **right-heavy**

- **Worst-case:**
- **Best-case:**
- **Average-case:**

We could store the actual height, but storing balances is simpler and more convenient.
AVL insertion

To perform $\text{insert}(T, k, v)$:

- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is -1, 0, or 1, then keep going.
- If the balance factor is ± 2, then call the fix algorithm to "rebalance" at that node. We are done.

How to "fix" an unbalanced AVL tree

Goal: change the *structure* without changing the *order*

Notice that if heights of A, B, C, D differ by at most 1, then the tree is a proper AVL tree.

Right Rotation

This is a *right rotation* on node z:

- $x
- y
- z
- B
- C
- D

Note: Only two edges need to be moved, and two balances updated. Useful to fix left-left imbalance.

Again . . .

Right Rotation
Left Rotation

This is a left rotation on node z:

Again, only two edges need to be moved and two balances updated. Useful to fix right-right imbalance.

Pseudocode for rotations

```
rotate-right(T)
T: AVL tree
returns rotated AVL tree
1. newroot ← T.left
2. T.left ← newroot.right
3. newroot.right ← T
4. return newroot
```

```
rotate-left(T)
T: AVL tree
returns rotated AVL tree
1. newroot ← T.right
2. T.right ← newroot.left
3. newroot.left ← T
4. return newroot
```

Double Right Rotation

This is a double right rotation on node z:

First, a left rotation on the left subtree (y). Second, a right rotation on the whole tree (z). Useful for left-right imbalance.
Double Left Rotation

This is a double left rotation on node z:

Right rotation on right subtree (y), followed by left rotation on the whole tree (z).
Useful for right-left imbalance.

Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

```plaintext
fix(T)
T: AVL tree with T.balance = ±2
returns a balanced AVL tree
1. if T.balance = -2 then
2.  if T.left.balance = 1 then
3.   T.left ← rotate-left(T.left)
4.  return rotate-right(T)
5. else if T.balance = 2 then
6.  if T.right.balance = -1 then
7.   T.right ← rotate-right(T.right)
8.  return rotate-left(T)
```

AVL Tree Operations

search: Just like in BSTs, costs $\Theta(\text{height})$

insert: Shown already, total cost $\Theta(\text{height})$

- fix restores the height of the tree it fixes to what it was,
- so fix will be called at most once.

delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with insert).

- fix may be called $\Theta(\text{height})$ times.

Total cost is $\Theta(\text{height})$.

AVL tree examples

Example:

```
                  22
                 -1
               10  31
              4   14  28  37
             6   13   18   16
            0   0   -1   0
```

Height of an AVL tree

Define \(N(h) \) to be the least number of nodes in a height-\(h \) AVL tree.

One subtree must have height at least \(h - 1 \), the other at least \(h - 2 \):

\[
N(h) = \begin{cases}
1 + N(h - 1) + N(h - 2), & h \geq 1 \\
1, & h = 0 \\
0, & h = -1
\end{cases}
\]

What sequence does this look like?

AVL Tree Analysis

Easier lower bound on \(N(h) \):

\[
N(h) > 2N(h - 2) > 4N(h - 4) > 8N(h - 6) > \cdots > 2^i N(h - 2i) \geq 2^{\left\lfloor h/2 \right\rfloor}
\]

Since \(n > 2^{\left\lfloor h/2 \right\rfloor} \), \(h \leq 2 \log n \),

and thus an AVL tree with \(n \) nodes has height \(O(\log n) \).

Also, \(n \leq 2^{h+1} - 1 \), so the height is \(\Theta(\log n) \).

\(\Rightarrow \) search, insert, delete all cost \(\Theta(\log n) \).