Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017
Dictionary ADT

A *dictionary* is a collection of *items*, each of which contains
- a *key*
- some *data*,
and is called a *key-value pair* (KVP). Keys can be compared and are (typically) unique.

Operations:
- *search*\((k)\)
- *insert*\((k, v)\)
- *delete*\((k)\)

optional: *join*, *isEmpty*, *size*, etc.

Examples: symbol table, license plate database
Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space
 (if not, the “value” could be a pointer)
- Comparing keys takes constant time

Unordered array or linked list

- $search$ $\Theta(n)$
- $insert$ $\Theta(1)$
- $delete$ $\Theta(n)$ (need to search)

Ordered array

- $search$ $\Theta(\log n)$
- $insert$ $\Theta(n)$
- $delete$ $\Theta(n)$
Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in $T\.left$ is less than the root key.
Every key k in $T\.right$ is greater than the root key.
BST Search and Insert

search(*k*) Compare *k* to current node, stop if found, else recurse on subtree unless it’s empty

Example: **search**(24)
BST Search and Insert

\[search(k)\] Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

Example: \(search(24)\)
BST Search and Insert

search(*)k*) Compare *)k* to current node, stop if found, else recurse on subtree unless it’s empty

Example: *search*(24)
BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it’s empty

Example: *search*(24)
BST Search and Insert

search(\(k\)) Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

insert(\(k, v\)) Search for \(k\), then insert \((k, v)\) as new node

Example: **insert**(24, ...)
BST Delete

- If node is a leaf, just delete it.
BST Delete

- If node is a leaf, just delete it.
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up

```
  15
  /  
 6   25
 /    /
10   23  29
 /     /
8     24  50
```
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete
search, insert, delete all have cost $\Theta(h)$, where
$h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are inserted one-at-a-time, how big is h?

- Worst-case:
search, insert, delete all have cost \(\Theta(h) \), where
\(h = \text{height of the tree} = \text{max. path length from root to leaf} \)

If \(n \) items are inserted one-at-a-time, how big is \(h \)?
- Worst-case: \(n - 1 = \Theta(n) \)
- Best-case:
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are *inserted* one-at-a-time, how big is h?

- **Worst-case:** $n - 1 = \Theta(n)$
- **Best-case:** $\lfloor \lg(n) \rfloor = \Theta(\log n)$
- **Average-case:**
search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$.

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n - 1 = \Theta(n)$
- Best-case: $\lceil \lg(n) \rceil = \Theta(\log n)$
- Average-case: $\Theta(\log n)$
 (just like recursion depth in quick-sort1)
AVL Trees

Introduced by Adel’son-Vel’skiï and Landis in 1962, an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be -1.)

At each non-empty node, we store $height(R) - height(L) \in \{-1, 0, 1\}$:

- -1 means the tree is left-heavy
- 0 means the tree is balanced
- 1 means the tree is right-heavy
AVL Trees

Introduced by Adel’son-Vel’skiï and Landis in 1962, an **AVL Tree** is a BST with an additional structural property: The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

At each non-empty node, we store $\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\}$:

- -1 means the tree is **left-heavy**
- 0 means the tree is **balanced**
- 1 means the tree is **right-heavy**

We could store the actual height, but storing balances is simpler and more convenient.
AVL insertion

To perform $\text{insert}(T, k, v)$:
- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is $-1, 0, \text{ or } 1$, then keep going.
- If the balance factor is ± 2, then call the fix algorithm to “rebalance” at that node. We are done.
How to “fix” an unbalanced AVL tree

Goal: change the *structure* without changing the *order*

Notice that if heights of A, B, C, D differ by at most 1, then the tree is a proper AVL tree.
Right Rotation

This is a right rotation on node z:

Note: Only two edges need to be moved, and two balances updated. Useful to fix left-left imbalance.
Right Rotation

This is a *right rotation* on node z:

![Diagram showing a right rotation]

Note: Only two edges need to be moved, and two balances updated. Useful to fix left-left imbalance.
Again . . .

Right Rotation
Again . . .

Right Rotation

Petrick (SCS, UW)
Again . . .

Right Rotation

\[
x \quad y \quad z
\]

Petrick (SCS, UW)

CS240 - Module 4

Fall 2017
Again ...

Right Rotation
Again . . .

Right Rotation

\[\begin{align*}
\text{y} & \quad \text{x} \\
\text{A} & \quad \text{B} \\
\text{C} & \quad \text{D}
\end{align*} \]
Again . . .

Right Rotation

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D}
\end{array}
\]

\[\text{X} \rightarrow \text{y} \rightarrow \text{Z} \]

Petrick (SCS, UW)
CS240 - Module 4
Fall 2017
Left Rotation

This is a *left rotation* on node z:

Again, only two edges need to be moved and two balances updated. Useful to fix right-right-right imbalance.
Again...

Left Rotation

Petrick (SCS, UW)
Again . . .

Left Rotation
Again . . .

Left Rotation
Again . . .

Left Rotation

Petrick (SCS, UW)
Again . . .

Left Rotation

x
y
z
BA C D

Petrick (SCS, UW) CS240 - Module 4 Fall 2017
Again . . .

Left Rotation

```
x
A
B

y

D
C

z
x
B
C
D
```

Petrick (SCS, UW)
CS240 - Module 4
Fall 2017 14 / 23
Pseudocode for rotations

\textbf{rotate-right}(T)

\textbf{T}: AVL tree

returns rotated AVL tree

1. \textit{newroot} ← \textbf{T}.left
2. \textbf{T}.left ← \textit{newroot}.right
3. \textit{newroot}.right ← \textbf{T}
4. \textbf{return newroot}

\textbf{rotate-left}(T)

\textbf{T}: AVL tree

returns rotated AVL tree

1. \textit{newroot} ← \textbf{T}.right
2. \textbf{T}.right ← \textit{newroot}.left
3. \textit{newroot}.left ← \textbf{T}
4. \textbf{return newroot}
Double Right Rotation

This is a \textit{double right rotation} on node \(z \):

First, a left rotation on the left subtree (\(y \)). Second, a right rotation on the whole tree (\(z \)). Useful for left-right imbalance.
Double Right Rotation

This is a double right rotation on node z:

First, a left rotation on the left subtree (y). Second, a right rotation on the whole tree (z).
Useful for left-right imbalance.
Again ...

Double Right Rotation

Petrick (SCS, UW) CS240 - Module 4 Fall 2017 17 / 23
Again . . .

Double Right Rotation
Again . . .

Double Right Rotation

Petrick (SCS, UW)
CS240 - Module 4
Fall 2017
Again . . .

Double Right Rotation
Again . . .

Double Right Rotation

Petrick (SCS, UW)
Again...

Double Right Rotation
Again . . .

Double Right Rotation
Again...

Double Right Rotation

Petrick (SCS, UW)

CS240 - Module 4
Fall 2017
Again . . .

Double Right Rotation
Again . . .

Double Right Rotation
Again ...
Again . . .

Double Right Rotation

Petrick (SCS, UW)
Double Right Rotation
Again . . .

Double Right Rotation

A
B
C
D
Double Left Rotation

This is a *double left rotation* on node z:

Right rotation on right subtree (y), followed by left rotation on the whole tree (z).
Useful for right-left imbalance.
Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

```plaintext
fix(T)
T: AVL tree with T.balance = ±2
returns a balanced AVL tree

1. if T.balance = −2 then
2. if T.left.balance = 1 then
3. T.left ← rotate-left(T.left)
4. return rotate-right(T)
5. else if T.balance = 2 then
6. if T.right.balance = −1 then
7. T.right ← rotate-right(T.right)
8. return rotate-left(T)
```
AVL Tree Operations

search: Just like in BSTs, costs $\Theta(height)$

insert: Shown already, total cost $\Theta(height)$
- fix restores the height of the tree it fixes to what it was,
- so fix will be called *at most once*.

delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with insert).
- fix may be called $\Theta(height)$ times.
Total cost is $\Theta(height)$.
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: $\text{insert}(8)$
AVL tree examples

Example: $\text{insert}(8)$
AVL tree examples

Example: delete(22)
Define \(N(h) \) to be the \textit{least} number of nodes in a height-\(h \) AVL tree.

One subtree must have height at least \(h - 1 \), the other at least \(h - 2 \):

\[
N(h) = \begin{cases}
1 + N(h - 1) + N(h - 2), & h \geq 1 \\
1, & h = 0 \\
0, & h = -1
\end{cases}
\]

What sequence does this look like?

The Fibonacci sequence!

\[
N(h) = F_{h+3} - 1 = \lfloor \phi^h \sqrt{5} \rfloor - 1,
\]

where \(\phi = \frac{1 + \sqrt{5}}{2} \).
Height of an AVL tree

Define $N(h)$ to be the least number of nodes in a height-h AVL tree.

One subtree must have height at least $h - 1$, the other at least $h - 2$:

$$N(h) = \begin{cases}
1 + N(h - 1) + N(h - 2), & h \geq 1 \\
1, & h = 0 \\
0, & h = -1
\end{cases}$$

What sequence does this look like? The Fibonacci sequence!

$$N(h) = F_{h+3} - 1 = \left\lfloor \frac{\varphi^{h+3}}{\sqrt{5}} \right\rfloor - 1, \text{ where } \varphi = \frac{1 + \sqrt{5}}{2}$$
Easier lower bound on $N(h)$:

$$N(h) > 2N(h - 2) > 4N(h - 4) > 8N(h - 6) > \cdots > 2^i N(h - 2i) \geq 2^{\left\lfloor h/2 \right\rfloor}$$
Easier lower bound on $N(h)$:

\[
N(h) > 2N(h - 2) > 4N(h - 4) > 8N(h - 6) > \cdots > 2^i N(h - 2i) \geq 2^{\lfloor h/2 \rfloor}
\]

Since $n > 2^{\lfloor h/2 \rfloor}$, $h \leq 2 \lg n$, and thus an AVL tree with n nodes has height $O(\log n)$. Also, $n \leq 2^{h+1} - 1$, so the height is $\Theta(\log n)$.

\Rightarrow search, insert, delete all cost $\Theta(\log n)$.