Module 5: Dictionaries II

CS 240 - Data Structures and Data Management

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017
Dictionary ADT: Review

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations

- **Unordered array or linked list**: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array**: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Balanced search trees (AVL trees)**: $\Theta(\log n)$ search, insert, and delete
Self-Organizing Search

- Unordered linked list

 \textit{search}: \Theta(n), \textit{insert}: \Theta(1), \textit{delete}: \Theta(1) (after a search)

- Linear search to find an item in the list

- Is there a more useful ordering?

 - No: if items are accessed equally likely
 - Yes: otherwise (we have a probability distribution for items)

- **Optimal static ordering:** sorting items by their probabilities of access in non-increasing order minimizes the expected cost of Search.

- **Proof Idea:** For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

- \(L = \langle x_1, x_2, \ldots, x_n \rangle \)

 Expected access cost in \(L \) is

 \[
 E(L) = \sum_{i=1}^{n} P(x_i) T(x_i) = \sum_{i=1}^{n} P(x_i) \cdot i
 \]

 - \(P(x_i) \) - access probability for \(x_i \)
 - \(T(x_i) \) - position of \(x_i \) in \(L \)

- Example

 \[
 P(a) = 0.3 \quad P(b) = 0.5 \quad P(c) = 0.2
 \]

 \(L = \langle a, b, c \rangle \)

 \[
 E(L) = 0.3 + 0.5 \times 2 + 0.2 \times 3 = 1.9
 \]

 \(L = \langle b, a, c \rangle \)

 \[
 E(L) = 0.5 + 0.3 \times 2 + 0.2 \times 3 = 1.7
 \]
Optimal Static Ordering
A list of elements ordered by non-increasing probability of access has minimum expected access cost
Proof by Contradiction

- \(L = \langle x_1, \ldots, x_k, x_{k+1}, \ldots, x_n \rangle \)
 Suppose the access cost of \(L \) is optimal and there is \(k \) such that \(P(x_k) < P(x_{k+1}) \)

\[
E(L) = P(x_k) \cdot k + P(x_{k+1}) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
\]

- Create another list \(L' \) by swapping \(x_k \) and \(x_{k+1} \).
 \(L' = \langle x_1, \ldots, x_{k+1}, x_k, \ldots, x_n \rangle \)

\[
E(L') = P(x_{k+1}) \cdot k + P(x_k) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
\]

- \(E(L') - E(L) = P(x_k) - P(x_{k+1}) < 0 \Rightarrow E(L') < E(L) \)
 Contradiction
Dynamic Ordering

- What if we do not know the access probabilities ahead of time?
- **Move-To-Front**(MTF): Upon a successful search, move the accessed item to the front of the list
- **Transpose**: Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:
- Both can be implemented in arrays or linked lists.
- Transpose does not adapt quickly to changing access patterns.
- MTF Works well in practice.
- Theoretically MTF is “competitive”:
 No more than twice as bad as the optimal “offline” ordering.
Skip Lists

- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A **skip list** for a set S of items is a series of lists S_0, S_1, \cdots, S_h such that:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

```
\begin{itemize}
  \item $S_0 = \{-\infty, 23, 37, 44, 65, 69, 79, 83, 87, 94, +\infty\}$
  \item $S_1 = \{-\infty, 23, 37, 44, 65, 69, 79, 83, 87, 94, +\infty\}$
  \item $S_2 = \{-\infty, 23, 37, 44, 65, 69, 79, 83, 87, 94, +\infty\}$
  \item $S_3 = \{-\infty, +\infty\}$
\end{itemize}
```
Skip Lists

- A **skip list** for a set S of items is a series of lists S_0, S_1, \cdots, S_h
- A two-dimensional collection of positions: **levels** and **towers**
- Traversing the skip list: after(p), below(p)
Search in Skip Lists

\[\text{skip-search}(L, k)\]

\(L\): A skip list, \(k\): a key

1. \(p \leftarrow \text{topmost left position of } L\)
2. \(S \leftarrow \text{stack of positions, initially containing } p\)
3. \(\textbf{while } \text{below}(p) \neq \text{null } \textbf{do}\)
4. \(p \leftarrow \text{below}(p)\)
5. \(\textbf{while } \text{key}(\text{after}(p)) < k \textbf{ do}\)
6. \(p \leftarrow \text{after}(p)\)
7. \(\text{push } p \text{ onto } S\)
8. \(\textbf{return } S\)

- \(S\) contains positions of the largest key \textbf{less than} \(k\) at each level.
- \(\text{after}(\text{top}(S))\) will have key \(k\), iff \(k\) is in \(L\).
- \textbf{drop down: } \(p \leftarrow \text{below}(p)\)
- \textbf{scan forward: } \(p \leftarrow \text{after}(p)\)
Search in Skip Lists

Example: Skip-Search(S, 87)
Insert in Skip Lists

- **Skip-Insert**(S, k, v)
 - Randomly compute the height of new item: repeatedly toss a coin until you get tails, let i the number of times the coin came up heads
 - Search for k in the skip list and find the positions p_0, p_1, \cdots, p_i of the items with largest key less than k in each list S_0, S_1, \cdots, S_i (by performing **Skip-Search**(S, k))
 - Insert item (k, v) into list S_j after position p_j for $0 \leq j \leq i$ (a tower of height i)
Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Insert in Skip Lists

Example: Skip-Insert($S, 100, v$)
Delete in Skip Lists

- **Skip-Delete**(S, k)
 - Search for k in the skip list and find all the positions p_0, p_1, \ldots, p_i of the items with the largest key smaller than k, where p_j is in list S_j. (this is the same as Skip-Search)
 - For each i, if $key(\text{after}(p_i)) == k$, then remove $\text{after}(p_i)$ from list S_i
 - Remove all but one of the lists S_i that contain only the two special keys
Delete in Skip Lists

Example: Skip-Delete$(S, 65)$
Summary of Skip Lists

- Expected **space** usage: $O(n)$
- Expected **height**: $O(\log n)$
 A skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$
- **Skip-Search**: $O(\log n)$ expected time
- **Skip-Insert**: $O(\log n)$ expected time
- **Skip-Delete**: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice