Chapter 5: Dictionaries II

CS 240 - Data Structures and Data Management

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Dictionary ADT: Review

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations

- Unordered array or linked list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Balanced search trees (AVL trees): $\Theta(\log n)$ search, insert, and delete

Self-Organizing Search

- Unordered linked list
 - search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
 - Linear search to find an item in the list
 - Is there a more useful ordering?
- No: if items are accessed equally likely
- Yes: otherwise (we have a probability distribution for items)
- Optimal static ordering: sorting items by their probabilities of access in non-increasing order minimizes the expected cost of Search.
- Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

- $L = \langle x_1, x_2, \ldots, x_n \rangle$

 Expected access cost in L is

 $E(L) = \sum_{i=1}^{n} P(x_i) \cdot T(x_i) = \sum_{i=1}^{n} P(x_i) \cdot i$

 $P(x_i)$ - access probability for x_i
 $T(x_i)$ - position of x_i in L

 Example

 $P(a) = 0.3 \quad P(b) = 0.5 \quad P(c) = 0.2$

 $L = \langle a, b, c \rangle$
 $E(L) = 0.3 + 0.5 \cdot 2 + 0.2 \cdot 3 = 1.9$

 $L = \langle b, a, c \rangle$
 $E(L) = 0.5 + 0.3 \cdot 2 + 0.2 \cdot 3 = 1.7$

Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

Proof by Contradiction

- $L = \langle x_1, \ldots, x_k, x_{k+1}, \ldots, x_n \rangle$

 Suppose the access cost of L is optimal and there is k such that $P(x_k) < P(x_{k+1})$

 $E(L) = P(x_k) \cdot k + P(x_{k+1}) \cdot (k+1) + \sum_{i \neq k, k+1} P(x_i) \cdot i$

 Create another list L' by swapping x_k and x_{k+1}.

 $L' = \langle x_1, \ldots, x_{k+1}, x_k, \ldots, x_n \rangle$

 $E(L') = P(x_{k+1}) \cdot k + P(x_k) \cdot (k+1) + \sum_{i \neq k, k+1} P(x_i) \cdot i$

 $E(L') - E(L) = P(x_k) - P(x_{k+1}) < 0 \Rightarrow E(L') < E(L)$

 Contradiction

Dynamic Ordering

- What if we do not know the access probabilities ahead of time?

 - Move-To-Front (MTF): Upon a successful search, move the accessed item to the front of the list
 - Transpose: Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:

- Both can be implemented in arrays or linked lists.
- Transpose does not adapt quickly to changing access patterns.
- MTF Works well in practice.
- Theoretically MTF is “competitive”:
 No more than twice as bad as the optimal “offline” ordering.
Skip Lists

- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A skip list for a set S of items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

```
Petrick (SCS, UW)
CS240 - Module 5
Fall 2017 7 / 16
```

- A skip list for a set S of items is a series of lists S_0, S_1, \cdots, S_h
- A two-dimensional collection of positions: **levels** and **towers**
- Traversing the skip list: after(p), below(p)

```
Petrick (SCS, UW)
CS240 - Module 5
Fall 2017 8 / 16
```

Search in Skip Lists

```
skip-search($L$, $k$)
$L$: A skip list, $k$: a key
1. $p \leftarrow$ topmost left position of $L$
2. $S \leftarrow$ stack of positions, initially containing $p$
3. while below($p$) $\neq$ null do
4.   $p \leftarrow$ below($p$)
5.   while key(after($p$)) < $k$ do
6.     $p \leftarrow$ after($p$)
7.   push $p$ onto $S$
8. return $S$

$S$ contains positions of the largest key less than $k$ at each level.
- after(top($S$)) will have key $k$, iff $k$ is in $L$.
- drop down: $p \leftarrow$ below($p$)
- scan forward: $p \leftarrow$ after($p$)
```

```
Petrick (SCS, UW)
CS240 - Module 5
Fall 2017 9 / 16
```
Search in Skip Lists

Example: Skip-Search($S, 87$)

Insert in Skip Lists

- **Skip-Insert(S, k, v)**
 - Randomly compute the height of new item: repeatedly toss a coin until you get tails, let i the number of times the coin came up heads
 - Search for k in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with largest key less than k in each list S_0, S_1, \ldots, S_i (by performing $Skip-Search(S, k)$)
 - Insert item (k, v) into list S_j after position p_j for $0 \leq j \leq i$ (a tower of height i)

Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Insert in Skip Lists

Example: Skip-Insert($S, 100, v$)

Delete in Skip Lists

- Skip-Delete(S, k)
 - Search for k in the skip list and find all the positions p_0, p_1, \ldots, p_i of the items with the largest key smaller than k, where p_j is in list S_j. (this is the same as Skip-Search)
 - For each i, if $\text{key}(\text{after}(p_i)) = k$, then remove $\text{after}(p_i)$ from list S_i
 - Remove all but one of the lists S_i that contain only the two special keys

Delete in Skip Lists

Example: Skip-Delete($S, 65$)
Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$

 A skip list with n items has height at most $3 \log n$ with probability at least $1 - \frac{1}{n^2}$
- Skip-Search: $O(\log n)$ expected time
- Skip-Insert: $O(\log n)$ expected time
- Skip-Delete: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice