Module 5: Dictionaries II
CS 240 - Data Structures and Data Management
Mark Petrick
Based on lecture notes by many previous cs240 instructors
David R. Cheriton School of Computer Science, University of Waterloo
Fall 2017

Dictionary ADT: Review

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations
- Unordered array or linked list: \(\Theta(1) \) insert, \(\Theta(n) \) search and delete
- Ordered array: \(\Theta(\log n) \) search, \(\Theta(n) \) insert and delete
- Balanced search trees (AVL trees): \(\Theta(\log n) \) search, insert, and delete

Self-Organizing Search

- Unordered linked list
 search: \(\Theta(n) \), insert: \(\Theta(1) \), delete: \(\Theta(1) \) (after a search)
- Linear search to find an item in the list
- Is there a more useful ordering?
- No: if items are accessed equally likely
- Yes: otherwise (we have a probability distribution for items)

Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

- \(L = \langle x_1, x_2, \ldots, x_n \rangle \)
 Expected access cost in \(L \) is
 \[E(L) = \sum_{i=1}^{n} P(x_i)T(x_i) = \sum_{i=1}^{n} P(x_i) \cdot i \]
 \(P(x_i) \) - access probability for \(x_i \)
 \(T(x_i) \) - position of \(x_i \) in \(L \)
- Example
 \(P(a) = 0.3 \) \(P(b) = 0.5 \) \(P(c) = 0.2 \)
 \(L = \langle a, b, c \rangle \)
 \[E(L) = 0.3 \cdot 1 + 0.5 \cdot 2 + 0.2 \cdot 3 = 1.9 \]
- \(L = \langle b, a, c \rangle \)
 \[E(L) = 0.5 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 = 1.7 \]
Optimal Static Ordering
A list of elements ordered by non-increasing probability of access has minimum expected access cost

Proof by Contradiction
- \(L = (x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) \)
 - Suppose the access cost of \(L \) is optimal and there is \(k \) such that \(P(x_k) < P(x_{k+1}) \)

 \[
 E(L) = P(x_k) \cdot k + P(x_{k+1}) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
 \]

- Create another list \(L' \) by swapping \(x_k \) and \(x_{k+1} \).

 \[
 L' = (x_1, \ldots, x_{k+1}, x_k, \ldots, x_n)
 \]

 \[
 E(L') = P(x_{k+1}) \cdot k + P(x_k) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
 \]

 \[
 E(L') - E(L) = P(x_k) - P(x_{k+1}) < 0 \implies E(L') < E(L)
 \]

Contradiction

Dynamic Ordering
- What if we do not know the access probabilities ahead of time?
 - **Move-To-Front (MTF):** Upon a successful search, move the accessed item to the front of the list
 - **Transpose:** Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:
- Both can be implemented in arrays or linked lists.
- Transpose does not adapt quickly to changing access patterns.
- MTF Works well in practice.
- Theoretically MTF is "competitive":
 - No more than twice as bad as the optimal "offline" ordering.

Skip Lists
- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A **skip list** for a set \(S \) of items is a series of lists \(S_0, S_1, \ldots, S_h \) such that:
 - Each list \(S_i \) contains the special keys \(-\infty\) and \(+\infty\)
 - List \(S_0 \) contains the keys of \(S \) in non-decreasing order
 - Each list is a subsequence of the previous one, i.e., \(S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h \)
 - List \(S_h \) contains only the two special keys

A two-dimensional collection of positions: **levels** and **towers**

Traversing the skip list: after(p), below(p)
Search in Skip Lists

skip-search(*L, k*)

1. \(p \leftarrow \text{topmost left position of } L \)
2. \(S \leftarrow \text{stack of positions, initially containing } p \)
3. **while** \(\text{below}(p) \neq \text{null} \) **do**
4. \(p \leftarrow \text{below}(p) \)
5. **while** \(\text{key}(\text{after}(p)) < k \) **do**
6. \(p \leftarrow \text{after}(p) \)
7. **push** \(p \) **onto** \(S \)
8. **return** \(S \)

- \(S \) contains positions of the largest key **less than** \(k \) at each level.
- \(\text{after}(\text{top}(S)) \) will have key \(k \), iff \(k \) is in \(L \).
- **drop down**: \(p \leftarrow \text{below}(p) \)
- **scan forward**: \(p \leftarrow \text{after}(p) \)

Insert in Skip Lists

Skip-Insert(*S, k, v*)

- Randomly compute the height of new item: repeatedly toss a coin until you get tails, let \(i \) the number of times the coin came up heads
- **Search** for \(k \) in the skip list and find the positions \(p_0, p_1, \cdots, p_i \) of the items with largest key less than \(k \) in each list \(S_0, S_1, \cdots, S_i \) (by performing **Skip-Search**(*S, k*))
- **Insert** item \((k, v)\) into list \(S_j \) after position \(p_j \) for \(0 \leq j \leq i \) (a tower of height \(i \))
Insert in Skip Lists

Example: Skip-Insert(S, 100, v)

Delete in Skip Lists

Example: Skip-Delete(S, 65)

Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$
 A skip list with n items has height at most $3 \log n$ with probability at least $1 - 1/n^2$
- Skip-Search: $O(\log n)$ expected time
- Skip-Insert: $O(\log n)$ expected time
- Skip-Delete: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice