Module 5: Dictionaries II

CS 240 - Data Structures and Data Management

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017
Dictionary ADT: Review

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations

- **Unordered array or linked list**: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array**: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Balanced search trees (AVL trees)**: $\Theta(\log n)$ search, insert, and delete
Self-Organizing Search

- Unordered linked list
 - \(\text{search: } \Theta(n) \), \(\text{insert: } \Theta(1) \), \(\text{delete: } \Theta(1) \) (after a search)
- Linear search to find an item in the list
- Is there a more useful ordering?
Self-Organizing Search

- Unordered linked list
 \[\text{search: } \Theta(n), \text{ insert: } \Theta(1), \text{ delete: } \Theta(1) \text{ (after a search)}\]

- Linear search to find an item in the list

- Is there a more useful ordering?

- No: if items are accessed equally likely

- Yes: otherwise (we have a probability distribution for items)

- Optimal static ordering: sorting items by their probabilities of access in non-increasing order minimizes the expected cost of Search.

- Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

- $L = \langle x_1, x_2, \ldots, x_n \rangle$
 - Expected access cost in L is

 $$E(L) = \sum_{i=1}^{n} P(x_i) T(x_i) = \sum_{i=1}^{n} P(x_i) \cdot i$$

 - $P(x_i)$ - access probability for x_i
 - $T(x_i)$ - position of x_i in L

- Example

 $P(a) = 0.3 \quad P(b) = 0.5 \quad P(c) = 0.2$

 $L = \langle a, b, c \rangle$

 $$E(L) = 0.3 + 0.5 \times 2 + 0.2 \times 3 = 1.9$$

 $L = \langle b, a, c \rangle$

 $$E(L) = 0.5 + 0.3 \times 2 + 0.2 \times 3 = 1.7$$
Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

Proof by Contradiction

\(L = \langle x_1, \ldots, x_k, x_{k+1}, \ldots, x_n \rangle \)

Suppose the access cost of \(L \) is optimal and there is \(k \) such that \(P(x_k) < P(x_{k+1}) \)

\[
E(L) = P(x_k) \cdot k + P(x_{k+1}) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
\]

Create another list \(L' \) by swapping \(x_k \) and \(x_{k+1} \).

\(L' = \langle x_1, \ldots, x_{k+1}, x_k, \ldots, x_n \rangle \)

\[
E(L') = P(x_{k+1}) \cdot k + P(x_k) \cdot (k + 1) + \sum_{i \neq k, k+1} P(x_i) \cdot i
\]

\[
E(L') - E(L) = P(x_k) - P(x_{k+1}) < 0 \Rightarrow E(L') < E(L)
\]

Contradiction
Dynamic Ordering

- What if we do not know the access probabilities ahead of time?
- **Move-To-Front (MTF):** Upon a successful search, move the accessed item to the front of the list
- **Transpose:** Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:
Both can be implemented in arrays or linked lists.
Transpose does not adapt quickly to changing access patterns.
MTF works well in practice.
Theoretically, MTF is "competitive": No more than twice as bad as the optimal "offline" ordering.
Dynamic Ordering

- What if we do not know the access probabilities ahead of time?
- **Move-To-Front (MTF):** Upon a successful search, move the accessed item to the front of the list
- **Transpose:** Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:

- Both can be implemented in arrays or linked lists.
- Transpose does not adapt quickly to changing access patterns.
- MTF Works well in practice.
- Theoretically MTF is “competitive”:
 No more than twice as bad as the optimal “offline” ordering.
Skip Lists

- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A *skip list* for a set S of items is a series of lists S_0, S_1, \cdots, S_h such that:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

![Skip List Diagram](image-url)
A skip list for a set S of items is a series of lists S_0, S_1, \cdots, S_h

A two-dimensional collection of positions: levels and towers

Traversing the skip list: after(p), below(p)
Search in Skip Lists

(skip-search(L, k))

L: A skip list, \(k \): a key

1. \(p \leftarrow \) topmost left position of L
2. \(S \leftarrow \) stack of positions, initially containing p
3. \(\text{while } \text{below}(p) \neq \text{null} \text{ do} \)
4. \(p \leftarrow \text{below}(p) \)
5. \(\text{while } \text{key}(\text{after}(p)) < k \text{ do} \)
6. \(p \leftarrow \text{after}(p) \)
7. push p onto S
8. return S

- S contains positions of the largest key less than k at each level.
- after(top(S)) will have key k, iff k is in L.
- drop down: \(p \leftarrow \text{below}(p) \)
- scan forward: \(p \leftarrow \text{after}(p) \)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Search in Skip Lists

Example: Skip-Search(S, 87)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Insert in Skip Lists

- **Skip-Insert**(S, k, v)
 - Randomly compute the height of new item: repeatedly toss a coin until you get tails, let i the number of times the coin came up heads
 - Search for k in the skip list and find the positions p₀, p₁, ⋅⋅⋅, pᵢ of the items with largest key less than k in each list S₀, S₁, ⋅⋅⋅, Sᵢ (by performing **Skip-Search**(S, k))
 - Insert item (k, v) into list Sⱼ after position pⱼ for 0 ≤ j ≤ i (a tower of height i)
Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: H, T ⇒ i = 1

Inserting 52 at position i=1:

S_0: [∞, 23, 37, 44, 65, 69, 79, 83, 87, 94, +∞]
S_1: [−∞, 37, 65, +∞]
S_2: [−∞, 65, +∞]
S_3: [−∞, +∞]
Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: H, T ⇒ i = 1

Skip-Search(S, 52)
Insert in Skip Lists

Example: Skip-Insert\((S, 52, v)\)
Coin tosses: H, T \(\Rightarrow i = 1\)
Insert in Skip Lists

Example: Skip-Insert(S, 100, ν)
Coin tosses: H, H, H, T ⇒ i = 3
Insert in Skip Lists

Example: Skip-Insert \((S, 100, v)\)
Coin tosses: H,H,H,T \(\Rightarrow i = 3\)

Skip-Search \((S, 100)\)
Insert in Skip Lists

Example: Skip-Insert(\(S, 100, v\))

Coin tosses: H,H,H,T \(\Rightarrow i = 3\)

Height increase
Delete in Skip Lists

- **Skip-Delete**(S, k)
 - Search for k in the skip list and find all the positions p_0, p_1, \ldots, p_i of the items with the largest key smaller than k, where p_j is in list S_j. (this is the same as Skip-Search)
 - For each i, if $\text{key}(\text{after}(p_i)) == k$, then remove $\text{after}(p_i)$ from list S_i
 - Remove all but one of the lists S_i that contain only the two special keys
Delete in Skip Lists

Example: Skip-Delete($S, 65$)
Delete in Skip Lists

Example: Skip-Delete(\(S, 65\))

Skip-Search(\(S, 65\))
Delete in Skip Lists

Example: Skip-Delete($S, 65$)
Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$

 A skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$

- **Skip-Search**: $O(\log n)$ expected time
- **Skip-Insert**: $O(\log n)$ expected time
- **Skip-Delete**: $O(\log n)$ expected time

Skip lists are fast and simple to implement in practice