Multi-Dimensional Data

- Various applications
 - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, · · ·)
 - Attributes of an employee (name, age, salary, · · ·)

- Dictionary for multi-dimensional data
 A collection of d-dimensional items
 Each item has d aspects (coordinates): $(x_0, x_1, \cdots, x_{d-1})$
 Operations: insert, delete, range-search query

- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
 Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD
Multi-Dimensional Data

- Each item has \(d \) aspects (coordinates): \((x_0, x_1, \cdots, x_{d-1})\)
- Aspect values \((x_i)\) are numbers
- Each item corresponds to a point in \(d \)-dimensional space
- We concentrate on \(d = 2 \), i.e., points in Euclidean plane

![Graph showing multi-dimensional data with a range-search query](image)

One-Dimensional Range Search

- **First solution**: ordered arrays
 - Running time:
 - Problem: does not generalize to higher dimensions
- **Second solution**: balanced BST (e.g., AVL tree)

\[
\text{BST-RangeSearch}(T, k_1, k_2)
\]

\(T\): A balanced search tree, \(k_1, k_2\): search keys

Report keys in \(T \) that are in range \([k_1, k_2]\)

1. if \(T = \text{nil} \) then return
2. if \(\text{key}(T) < k_1 \) then
 3. \(\text{BST-RangeSearch}(T.\text{right}, k_1, k_2) \)
4. if \(\text{key}(T) > k_2 \) then
 5. \(\text{BST-RangeSearch}(T.\text{left}, k_1, k_2) \)
6. if \(k_1 \leq \text{key}(T) \leq k_2 \) then
 7. \(\text{BST-RangeSearch}(T.\text{left}, k_1, k_2) \)
 8. report \(\text{key}(T) \)
 9. \(\text{BST-RangeSearch}(T.\text{right}, k_1, k_2) \)
Range Search example

\textit{BST-RangeSearch}(T, 30, 65)

Nodes either on boundary, inside, or outside.

\begin{itemize}
 \item \textbf{P1}: path from the root to a leaf that goes right if \(k < k_1 \) and left otherwise
 \item \textbf{P2}: path from the root to a leaf that goes left if \(k > k_2 \) and right otherwise
 \item Partition nodes of \(T \) into three groups:
 \begin{itemize}
 \item \textbf{boundary nodes}: nodes in \(P_1 \) or \(P_2 \)
 \item \textbf{inside nodes}: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of \(P_1 \)) or (a subtree rooted at a left child of a node of \(P_2 \))
 \item \textbf{outside nodes}: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of \(P_1 \)) or (a subtree rooted at a right child of a node of \(P_2 \))
 \end{itemize}
 \item \(k \): number of reported items
 \item Nodes visited during the search:
 \begin{itemize}
 \item \(O(\log n) \) boundary nodes
 \item \(O(k) \) inside nodes
 \item No outside nodes
 \end{itemize}
 \item Running time \(O(\log n + k) \)
\end{itemize}
2-Dimensional Range Search

- Each item has 2 aspects (coordinates): \((x_i, y_i)\)
- Each item corresponds to a point in Euclidean plane
- Options for implementing \(d\)-dimensional dictionaries:
 - Reduce to one-dimensional dictionary: combine the \(d\)-dimensional key into one key
 Problem: Range search on one aspect is not straightforward
 - Use several dictionaries: one for each dimension
 Problem: inefficient, wastes space
 - Partition trees
 - A tree with \(n\) leaves, each leaf corresponds to an item
 - Each internal node corresponds to a region
 - **quadtrees, kd-trees**
 - multi-dimensional **range trees**

Quadtrees

- We have \(n\) points \(P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}\) in the plane
- How to **build** a quadtree on \(P\):
 - Find a square \(R\) that contains all the points of \(P\) (We can compute minimum and maximum \(x\) and \(y\) values among \(n\) points)
 - Root of the quadtree corresponds to \(R\)
 - **Split**: Partition \(R\) into four equal subsquares (**quadrants**), each correspond to a child of \(R\)
 - Recursively repeat this process for any node that contains more than one point
 - Points on split lines belong to left/bottom side
 - Each leaf stores (at most) one point
 - We can delete a leaf that does not contain any point
Quadtrees

- Example: We have 13 points $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{12}, y_{12})\}$ in the plane

Quadtree Operations

- **Search**: Analogous to binary search trees
- **Insert**:
 - Search for the point
 - Split the leaf if there are two points
- **Delete**:
 - Search for the point
 - Remove the point
 - If its parent has only one child left, delete that child and continue the process toward the root.
Quadtree: Range Search

\[\text{QTree-RangeSearch}(T, R) \]
\[T: \text{A quadtree node}, R: \text{Query rectangle} \]
1. \textbf{if} (\(T \) is a leaf) \textbf{then}
2. \textbf{if} (\(T\).point \(\in \) \(R \)) \textbf{then}
3. \quad \text{report} \(T\).point
4. \quad \textbf{for} each child \(C \) of \(T \) \textbf{do}
5. \quad \textbf{if} \(C\).region \(\cap \) \(R \) \(\neq \emptyset \) \textbf{then}
6. \quad \qquad \text{QTree-RangeSearch}(C, \(R \))

- **Spread factor** of points \(P \): \(\beta(P) = \frac{d_{\text{max}}}{d_{\text{min}}} \)
- \(d_{\text{max}}(d_{\text{min}}) \): maximum (minimum) distance between two points in \(P \)
- **Height** of quadtree: \(h \in \Theta(\log_2 \frac{d_{\text{max}}}{d_{\text{min}}}) \)
- Complexity to build initial tree: \(\Theta(nh) \)
- Complexity of range search: \(\Theta(nh) \) even if the answer is \(\emptyset \)

Quadtree Conclusion

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (usually the boundary box is padded to get a power of two).
- Space wasteful
- Major drawback: can have very large height for certain nonuniform distributions of points
- Easily generates to higher dimensions (octrees, etc.).
kd-trees

- We have n points $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$ in the plane.
- Quadtrees split square into quadrants regardless of where points actually lie.
- **kd-tree idea**: Split the points into two (roughly) equal subsets.
- **How to build a** kd-tree on P:
 - Split P into two equal subsets using a vertical line.
 - Split each of the two subsets into two equal pieces using horizontal lines.
 - Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region.
- **More details**:
 - Initially, we sort the n points according to their x-coordinates.
 - The root of the tree is the point with median x coordinate (index $\lfloor n/2 \rfloor$ in the sorted list).
 - All other points with x coordinate less than or equal to this go into the left subtree; points with larger x-coordinate go in the right subtree.
 - At alternating levels, we sort and split according to y-coordinates instead.

Complexity: $\Theta(n \log n)$, **height of the tree**: $\Theta(\log n)$
kd-tree: Range Search

```plaintext
kd-rangeSearch( T, R, split[← ’x’])
T: A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T.point ∈ R then
   report T.point
3. for each child C of T do
   if C.region ∩ R ≠ ∅ then
      kd-rangeSearch(C, R)  
      if split = ’x’ then
         if T.point.x ≥ R.leftSide then
            kd-rangeSearch(T.left, R, ’y’)
         if T.point.x < R.rightSide then
            kd-rangeSearch(T.right, R, ’y’)
      if split = ’y’ then
         if T.point.y ≥ R.bottomSide then
            kd-rangeSearch(T.left, R, ’x’)
         if T.point.y < R.topSide then
            kd-rangeSearch(T.right, R, ’x’)
```

kd-tree: Range Search Complexity

- The complexity is $O(k + U)$ where k is the number of keys reported and U is the number of regions we go to but unsuccessfully.
- U corresponds to the number of regions which intersect but are not fully in R.
- Those regions have to intersect one of the four sides of R.
- $Q(n)$: Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line.
- $Q(n)$ satisfies the following recurrence relation:

 $$Q(n) = 2Q(n/4) + O(1)$$

- It solves to $Q(n) = O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is $O(k + \sqrt{n})$.
kd-tree: Higher Dimensions

- kd-trees for \(d \)-dimensional space
 - At the root the point set is partitioned based on the first coordinate
 - At the children of the root the partition is based on the second coordinate
 - At depth \(d - 1 \) the partition is based on the last coordinate
 - At depth \(d \) we start all over again, partitioning on first coordinate

- **Storage**: \(O(n) \)
- **Construction time**: \(O(n \log n) \)
- **Range query time**: \(O(n^{1-1/d} + k) \)

(Note: \(d \) is considered to be a constant.)

Range Trees

- We have \(n \) points \(P = \{(x_0,y_0),(x_1,y_1), \ldots,(x_{n-1},y_{n-1})\} \) in the plane
- A range tree is a **tree of trees** (a *multi-level* data structure)
- How to **build** a range tree on \(P \):
 - Build a balanced binary search tree \(\tau \) determined by the \(x \)-coordinates of the \(n \) points
 - For every node \(v \in \tau \), build a balanced binary search tree \(\tau_{assoc}(v) \) (associated structure of \(\tau \)) determined by the \(y \)-coordinates of the nodes in the subtree of \(\tau \) with root node \(v \)
Range Trees: Operations

- **Search**: trivially as in a binary search tree
- **Insert**: insert point in \(\tau \) by \(x \)-coordinate
 - From inserted leaf, walk back up to the root and insert the point in all associated trees \(\tau_{assoc}(v) \) of nodes \(v \) on path to the root
- **Delete**: analogous to insertion
- **Note**: re-balancing is a problem!
Range Trees: Range Search

- **A two stage process**
 - To perform a range search query \(R = [x_1, x_2] \times [y_1, y_2] \):
 - Perform a range search (on the x-coordinates) for the interval \([x_1, x_2]\) in \(\tau \) (\(BST-RangeSearch(\tau, x_1, x_2) \))
 - For every **outside node**, do nothing.
 - For every "top" **inside node** \(\nu \), perform a range search (on the y-coordinates) for the interval \([y_1, y_2]\) in \(\tau_{\text{assoc}}(\nu) \). During the range search of \(\tau_{\text{assoc}}(\nu) \), do not check any x-coordinates (they are all within range).
 - For every **boundary node**, test to see if the corresponding point is within the region \(R \).

- Running time: \(O(k + \log^2 n) \)
- Range tree space usage: \(O(n \log n) \)

Range Trees: Higher Dimensions

- **Range trees for** \(d \)-dimensional space
- **Space/time trade-off**
 - **Storage**: \(O(n (\log n)^{d-1}) \) \(\quad \) \(\text{kd-trees}: O(n) \)
 - **Construction time**: \(O(n (\log n)^{d-1}) \) \(\quad \) \(\text{kd-trees}: O(n \log n) \)
 - **Range query time**: \(O((\log n)^d + k) \) \(\quad \) \(\text{kd-trees}: O(n^{1-1/d} + k) \)

(Note: \(d \) is considered to be a constant.)