Module 8: Data Structures for Multi-Dimensional Data

CS 240 - Data Structures and Data Management

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Multi-Dimensional Data

- Various applications
 - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, ...)
 - Attributes of an employee (name, age, salary, ...)
- Dictionary for multi-dimensional data
 - A collection of \(d \)-dimensional items
 - Each item has \(d \) aspects (coordinates): \((x_0, x_1, \cdots, x_{d-1})\)
- Operations: insert, delete, range-search query
- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
 - Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD

One-Dimensional Range Search

- First solution: ordered arrays
 - Running time:
 - Problem: does not generalize to higher dimensions
- Second solution: balanced BST (e.g., AVL tree)

\[
\text{BST-RangeSearch}(T, k_1, k_2)
\]

\(T\): A balanced search tree, \(k_1, k_2\): search keys
Report keys in \(T\) that are in range \([k_1, k_2]\)

1. if \(T = \text{nil}\) then return
2. if \(\text{key}(T) < k_1\) then
3. BST-RangeSearch(\(T\cdot\text{right}\), \(k_1, k_2\))
4. if \(\text{key}(T) > k_2\) then
5. BST-RangeSearch(\(T\cdot\text{left}\), \(k_1, k_2\))
6. if \(k_1 \leq \text{key}(T) \leq k_2\) then
7. BST-RangeSearch(\(T\cdot\text{left}\), \(k_1, k_2\))
8. report \(\text{key}(T)\)
9. BST-RangeSearch(\(T\cdot\text{right}\), \(k_1, k_2\))
Range Search example

\[\text{BST-RangeSearch}(T, 30, 65) \]

Nodes either on boundary, inside, or outside.

One-Dimensional Range Search

- \(P_1 \): path from the root to a leaf that goes right if \(k < k_1 \) and left otherwise
- \(P_2 \): path from the root to a leaf that goes left if \(k > k_2 \) and right otherwise
- Partition nodes of \(T \) into three groups:
 1. **boundary nodes**: nodes in \(P_1 \) or \(P_2 \)
 2. **inside nodes**: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of \(P_1 \)) or (a subtree rooted at a left child of a node of \(P_2 \))
 3. **outside nodes**: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of \(P_1 \)) or (a subtree rooted at a right child of a node of \(P_2 \))
- \(k \): number of reported items
- Nodes visited during the search:
 - \(O(\log n) \) boundary nodes
 - \(O(k) \) inside nodes
 - No outside nodes
- Running time \(O(\log n + k) \)

2-Dimensional Range Search

- Each item has 2 aspects (coordinates): \((x_i, y_i)\)
- Each item corresponds to a point in Euclidean plane
- Options for implementing \(d \)-dimensional dictionaries:
 - Reduce to one-dimensional dictionary: combine the \(d \)-dimensional key into one key
 - Problem: Range search on one aspect is not straightforward
 - Use several dictionaries: one for each dimension
 - Problem: inefficient, wastes space
 - **Partition trees**
 - A tree with \(n \) leaves, each leaf corresponds to an item
 - Each internal node corresponds to a region
 - **quadtrees, kd-trees**
 - multi-dimensional **range trees**

Quadtrees

- We have \(n \) points \(P = \{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\} \) in the plane
- How to **build** a quadtree on \(P \):
 - Find a square \(R \) that contains all the points of \(P \) (We can compute minimum and maximum \(x \) and \(y \) values among \(n \) points)
 - Root of the quadtree corresponds to \(R \)
 - **Split**: Partition \(R \) into four equal subsquares (quadrants), each correspond to a child of \(R \)
 - Recursively repeat this process for any node that contains more than one point
 - Points on split lines belong to left/bottom side
 - Each leaf stores (at most) one point
 - We can delete a leaf that does not contain any point
Quadtrees

- Example: We have 13 points $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{12}, y_{12})\}$ in the plane.

Quadtree Operations

- **Search**: Analogous to binary search trees
- **Insert**:
 - Search for the point
 - Split the leaf if there are two points
- **Delete**:
 - Search for the point
 - Remove the point
 - If its parent has only one child left, delete that child and continue the process toward the root.

Quadtree: Range Search

\[
\text{QTree-RangeSearch}(T, R)
\]

- T: A quadtree node, R: Query rectangle
- 1. if $(T$ is a leaf) then
- 2. if $(T$.point $\in R$) then
- 3. report T.point
- 4. for each child C of T do
- 5. if C.region $\cap R \neq \emptyset$ then
- 6. QTree-RangeSearch(C, R)

- **Spread factor** of points P: $\beta(P) = \frac{d_{\text{max}}}{d_{\text{min}}}$
- $d_{\text{max}}(d_{\text{min}})$: maximum (minimum) distance between two points in P
- **Height** of quadtree: $h \in \Theta(\log_2 \frac{d_{\text{max}}}{d_{\text{min}}})$
- Complexity to build initial tree: $\Theta(nh)$
- Complexity of range search: $\Theta(nh)$ even if the answer is \emptyset

Quadtree Conclusion

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (usually the boundary box is padded to get a power of two).
- Space wasteful
- Major drawback: can have very large height for certain nonuniform distributions of points
- Easily generates to higher dimensions (octrees, etc.).
kd-trees

- We have \(n \) points \(P = \{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\} \) in the plane.
- Quadtrees split square into quadrants regardless of where points actually lie.
- kd-tree idea: Split the points into two (roughly) equal subsets.
- How to build a kd-tree on \(P \):
 - Split \(P \) into two equal subsets using a vertical line.
 - Split each of the two subsets into two equal pieces using horizontal lines.
 - Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region.
- More details:
 - Initially, we sort the \(n \) points according to their \(x \)-coordinates.
 - The root of the tree is the point with median \(x \)-coordinate (index \(\lfloor n/2 \rfloor \) in the sorted list).
 - All other points with \(x \)-coordinate less than or equal to this go into the left subtree; points with larger \(x \)-coordinate go in the right subtree.
 - At alternating levels, we sort and split according to \(y \)-coordinates instead.
- Complexity: \(\Theta(n \log n) \), height of the tree: \(\Theta(\log n) \)

kd-tree: Range Search

```
kd-rangeSearch(T, R, split[←'x'])
T: A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T.point ∈ R then
   3. report T.point
4. for each child C of T do
   5. if C.region ∩ R ≠ ∅ then
      6. kd-rangeSearch(C, R) if split = 'x' then
        7. if T.point.x ≥ R.leftSide then
           kd-rangeSearch(T.left, R, 'y')
        8. if T.point.x < R.rightSide then
           kd-rangeSearch(T.right, R, 'y')
     9. if split = 'y' then
      10. if T.point.y ≥ R.bottomSide then
          kd-rangeSearch(T.left, R, 'x')
      11. if T.point.y < R.topSide then
          kd-rangeSearch(T.right, R, 'x')
```

kd-tree: Range Search Complexity

- The complexity is \(O(k + U) \) where \(k \) is the number of keys reported and \(U \) is the number of regions we go to but unsuccessfully.
- \(U \) corresponds to the number of regions which intersect but are not fully in \(R \).
- Those regions have to intersect one of the four sides of \(R \).
- \(Q(n) \): Maximum number of regions in a kd-tree with \(n \) points that intersect a vertical (horizontal) line.
- \(Q(n) \) satisfies the following recurrence relation:
 \[
 Q(n) = 2Q(n/4) + O(1)
 \]
- It solves to \(Q(n) = O(\sqrt{n}) \).
- Therefore, the complexity of range search in kd-trees is \(O(k + \sqrt{n}) \).
Range Trees

- We have \(n \) points \(P = \{(x_0,y_0),(x_1,y_1),\ldots,(x_{n-1},y_{n-1})\} \) in the plane
- A range tree is a tree of trees (a multi-level data structure)
- How to build a range tree on \(P \):
 - Build a balanced binary search tree \(\tau \) determined by the \(x \)-coordinates of the \(n \) points
 - For every node \(v \in \tau \), build a balanced binary search tree \(\tau_{assoc}(v) \) (associated structure of \(\tau \)) determined by the \(y \)-coordinates of the nodes in the subtree of \(\tau \) with root node \(v \)

Range Tree Structure

- Binary search tree on \(x \)-coordinates
- Binary search tree on \(y \)-coordinates

Range Trees: Operations

- Search: trivially as in a binary search tree
- Insert: insert point in \(\tau \) by \(x \)-coordinate
- From inserted leaf, walk back up to the root and insert the point in all associated trees \(\tau_{assoc}(v) \) of nodes \(v \) on path to the root
- Delete: analogous to insertion
- Note: re-balancing is a problem!
Range Trees: Range Search

- **A two stage process**
 - To perform a range search query $R = [x_1, x_2] \times [y_1, y_2]$:
 - Perform a range search (on the x-coordinates) for the interval $[x_1, x_2]$ in τ ($\text{BST-RangeSearch}(\tau, x_1, x_2)$)
 - For every outside node, do nothing.
 - For every “top” inside node v, perform a range search (on the y-coordinates) for the interval $[y_1, y_2]$ in $\tau_{\text{assoc}}(v)$. During the range search of $\tau_{\text{assoc}}(v)$, do not check any x-coordinates (they are all within range).
 - For every boundary node, test to see if the corresponding point is within the region R.
 - Running time: $O(k + \log^2 n)$
 - Range tree space usage: $O(n \log n)$

Range Trees: Higher Dimensions

- Range trees for d-dimensional space
- Space/time trade-off
 - Storage: $O(n (\log n)^{d-1})$
 - Construction time: $O(n (\log n)^{d-1})$
 - Range query time: $O((\log n)^d + k)$

(Note: d is considered to be a constant.)