Pattern Matching

- Search for a string (pattern) in a large body of text
- $T[0..n-1]$ – The text (or haystack) being searched within
- $P[0..m-1]$ – The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first i such that
 \[
P[j] = T[i+j] \quad \text{for} \quad 0 \leq j \leq m-1
 \]
- This is the first occurrence of P in T
- If P does not occur in T, return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining
Pattern Matching

Example:
- \(T = \text{“Where is he?”} \)
- \(P_1 = \text{“he”} \)
- \(P_2 = \text{“who”} \)

Definitions:
- **Substring** \(T[i..j] \) \(0 \leq i \leq j < n \): a string of length \(j - i + 1 \) which consists of characters \(T[i], \ldots, T[j] \) in order
- A **prefix** of \(T \):
 - a substring \(T[0..i] \) of \(T \) for some \(0 \leq i < n \)
- A **suffix** of \(T \):
 - a substring \(T[i..n - 1] \) of \(T \) for some \(0 \leq i \leq n - 1 \)

General Idea of Algorithms

Pattern matching algorithms consist of **guesses** and **checks**:
- A **guess** is a position \(i \) such that \(P \) might start at \(T[i] \).
 - Valid guesses (initially) are \(0 \leq i \leq n - m \).
- A **check** of a guess is a single position \(j \) with \(0 \leq j < m \) where we compare \(T[i + j] \) to \(P[j] \). We must perform \(m \) checks of a single **correct** guess, but may make (many) fewer checks of an **incorrect** guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.
Brute-force Algorithm

Idea: Check every possible guess.

\[
\text{BruteForcePM}(T[0..n-1], P[0..m-1])
\]

1. **for** \(i \leftarrow 0 \) **to** \(n - m \) **do**
2. \(\text{match} \leftarrow \text{true} \)
3. \(j \leftarrow 0 \)
4. **while** \(j < m \) **and** \(\text{match} \) **do**
5. \(\text{if} \ T[i + j] = P[j] \) **then**
6. \(j \leftarrow j + 1 \)
7. **else**
8. \(\text{match} \leftarrow \text{false} \)
9. **if** \(\text{match} \) **then**
10. \(\text{return} \ i \)
11. \(\text{return} \ \text{FAIL} \)

Example

- Example: \(T = \text{abbbababbab} \), \(P = \text{abba} \)

- What is the worst possible input?
 \(P = a^{m-1}b \), \(T = a^n \)

- Worst case performance \(\Theta((n - m + 1)m) \)

- \(m \leq n/2 \Rightarrow \Theta(mn) \)
Pattern Matching

More sophisticated algorithms
- Deterministic finite automata (DFA)
- KMP, Boyer-Moore and Rabin-Karp
- Do extra **preprocessing** on the pattern P
- We eliminate guesses based on completed matches and mismatches.

String matching with finite automata
There is a string-matching automaton for every pattern P. It is constructed from the pattern in a preprocessing step before it can be used to search the text string.

Example: Automaton for the pattern $P = \text{ababaca}$
String matching with finite automata

Let P the pattern to search, of length m. Then

- the states of the automaton are $0, \ldots, m$
- the transition function δ of the automaton is defined as follows, for a state q and a character c in Σ:

$$\delta(q, c) = \ell(P[0..q-1]c),$$

where

- $P[0..q-1]c$ is the concatenation of $P[0..q-1]$ and c
- for a string s, $\ell(s) \in \{0, \ldots, m\}$ is the length of the longest prefix of P that is also a suffix of s.

Graphically, this corresponds to

$$q \xrightarrow{c} \delta(q, c)$$

Finite-Automaton-Matcher(T, δ, m)

```plaintext
n ← length[T]
q ← 0
for $i ← 0$ to $n - 1$ do
  $q ← \delta(q, T[i])$
  if $q = m$
    then print "Pattern occurs with shift" $i - (m - 1)$
```

Idea of proof: the state after reading $T[i]$ is $\ell(T[0..i])$.
String matching with finite automata

- Matching time on a text string of length n is $\Theta(n)$

- This does not include the preprocessing time required to compute the transition function δ. There exists an algorithm with $O(m|\Sigma|)$ preprocessing time.

- Altogether, we can find all occurrences of a length-m pattern in a length-n text over a finite alphabet Σ with $O(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

KMP Algorithm

- Knuth-Morris-Pratt algorithm (1977)
- Compares the pattern to the text in left-to-right
- Shifts the pattern more intelligently than the brute-force algorithm
- When a mismatch occurs, how much can we shift the pattern (reusing knowledge from previous matches)?

$$T = \begin{array}{ccccccccccc} a & b & c & d & c & a & b & c & ? & ? & ? \\ a & b & c & d & c & a & b & a & & & \\ & & & & & a & b & c & d & c & a \end{array}$$

- **KMP Answer**: this depends on the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$
KMP Failure Array

T: a b b c a b c d...
P: a b b c a b a a

what next slide would match with the text?
KMP Failure Array

T: a b b c a b c d...
P: a b b c a b a a
× a b b c a b a a
× a b b c a b a a

KMP Failure Array

T: a b b c a b c d...
P: a b b c a b a a
× a b b c a b a a
× a b b c a b a a
× a b b c a b a a
KMP Failure Array

Suppose we have a match up to position $T[i - 1] = P[j - 1]$, but not at the next position.

Define $F[j - 1]$ as the index we will have to check in P, after we bring the pattern to its next possible position (previous example: $j = 6$, $F[5] = 2$).

This can be computed by trying all sliding positions until finding the first one matching the text (as in previous example). We can do better:

- any possible sliding position corresponds to a prefix of $P[0..j - 1]$ that is also a strict suffix of it = a suffix of $P[1..j - 1]$
- the next possible sliding position corresponds to the largest such prefix / suffix
- we let $F[j - 1]$ be the length of this prefix / suffix.
KMP Failure Array

Schematically:

\[\text{T} \quad \text{first mismatch} \quad \text{P} \]

\[j \quad j - 1 \]

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 19 / 51

KMP Failure Array

Schematically:

\[\text{T} \quad \text{next slide that matches with T} \quad \text{P} \]

\[j \quad j - 1 \]

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 20 / 51
KMP Failure Array

Schematically:

T

P

\[\begin{array}{c}
T \\
\bigcup
P
\end{array} \]

\[j - 1 \]

next slide that matches with T

, ,

F \[j - 1 \]

F \[j - 1 \]
KMP Failure Array

Schematically:

\[T \]

\[P \]

\[j - 1 \]

\[F[j - 1] \]

\[F[j - 1] \]

no need to check for matching with \(T \)

comparing with \(T \) starts from here

Slide

\[P \]

\[i \]

\[j \]

KMP Failure Array

- \(F[0] = 0 \)
- \(F[j] \), for \(j > 0 \), is the length of the largest prefix of \(P[0..j] \) that is also a suffix of \(P[1..j] \)
- Consider \(P = \text{abacaba} \)

<table>
<thead>
<tr>
<th>(j)</th>
<th>(P[1..j])</th>
<th>(P)</th>
<th>(F[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ba</td>
<td>abacaba</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>bac</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>baca</td>
<td>abacaba</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>bacab</td>
<td>abacaba</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>bacaba</td>
<td>abacaba</td>
<td>3</td>
</tr>
</tbody>
</table>
Computing the Failure Array

failureArray(*P*)

P: String of length *m* (pattern)

1. \(F[0] \leftarrow 0 \)
2. \(i \leftarrow 1 \)
3. \(j \leftarrow 0 \)
4. while *i* < *m* do
5. if *P*[i] = *P*[j] then
6. \(F[i] \leftarrow j + 1 \)
7. \(i \leftarrow i + 1 \)
8. \(j \leftarrow j + 1 \)
9. else if *j* > 0 then
10. \(j \leftarrow F[j - 1] \)
11. else
12. \(F[i] \leftarrow 0 \)
13. \(i \leftarrow i + 1 \)

KMP Algorithm

KMP(*T*, *P*), to return the first match

T: String of length *n* (text), *P*: String of length *m* (pattern)

1. \(F \leftarrow \text{failureArray}(P) \)
2. \(i \leftarrow 0 \)
3. \(j \leftarrow 0 \)
4. while *i* < *n* do
5. if *T*[i] = *P*[j] then
6. if *j* = *m* - 1 then
7. return *i* - *j* //match
8. else
9. \(i \leftarrow i + 1 \)
10. \(j \leftarrow j + 1 \)
11. else
12. if *j* > 0 then
13. \(j \leftarrow F[j - 1] \)
14. else
15. \(i \leftarrow i + 1 \)
16. return \(-1\) // no match
KMP: Example

P = abacaba

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>F[j]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

T = abaxyabacabbaababacaba

Exercise: continue with **T** = abaxyabacabbaababacaba

KMP: Analysis

failureArray

- At each iteration of the while loop, at least one of the following happens:
 - i increases by one, or
 - the index i – j increases by at least one (F[j − 1] < j)
- There are no more than 2m iterations of the while loop
- Running time: $\Theta(m)$

KMP

- failureArray can be computed in $\Theta(m)$ time
- At each iteration of the while loop, at least one of the following happens:
 - i increases by one, or
 - the index i – j increases by at least one (F[j − 1] < j)
- There are no more than 2n iterations of the while loop
- Running time: $\Theta(n)$
Boyer-Moore Algorithm

Based on three key ideas:

- **Reverse-order searching**: Compare P with a subsequence of T moving backwards

- **Bad character jumps**: When a mismatch occurs at $T[i] = c$
 - If P contains c, we can shift P to align the last occurrence of c in P with $T[i]$
 - Otherwise, we can shift P to align $P[0]$ with $T[i + 1]$

- **Good suffix jumps**: If we have already matched a suffix of P, then get a mismatch, we can shift P forward to align with the previous occurrence of that suffix (with a mismatch from the suffix we read). If none exists, look for the longest prefix of P that is a suffix of what we read. Similar to failure array in KMP.

- Can skip large parts of T

Bad character examples

$P = a l d o$

$T = w h e r e i s w a l d o$

<table>
<thead>
<tr>
<th></th>
<th>o</th>
<th>o</th>
<th>a</th>
<th>l</th>
<th>d</th>
<th>o</th>
</tr>
</thead>
</table>

6 comparisons (checks)

$P = m o o r e$

$T = b o y e r m o o r e$

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>o</td>
<td>o</td>
<td>r</td>
<td>e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 comparisons (checks)
Good suffix examples

\[P = \text{sells shells} \]

\[
\begin{array}{cccccc}
 & & & & & \\
 h & e & l & l & s \\
 s & (e) & (l) & (l) & (s) & s & h & e & l & l & s \\
\end{array}
\]

\[P = \text{odetofood} \]

\[
\begin{array}{ccccccc}
 & & & & & & \\
 i & l & i & k & e & f & o & o & d \\
 f & r & o & m & m & e & x & i & c & o \\
 (e) & (o) & (d) & d & d \\
\end{array}
\]

- Good suffix moves further than bad character for 2nd guess.
- Bad character moves further than good suffix for 3rd guess.
- This is out of range, so pattern not found.

Last-Occurrence Function

- **Preprocess** the pattern \(P \) and the alphabet \(\Sigma \)
- Build the last-occurrence function \(L \) mapping \(\Sigma \) to integers
 - \(L(c) \) is defined as
 - the largest index \(i \) such that \(P[i] = c \) or
 - \(-1\) if no such index exists
- Example: \(\Sigma = \{a, b, c, d\} \), \(P = abacab \)

\[
\begin{array}{cccc}
 c & a & b & d \\
 L(c) & 4 & 5 & -1 \\
\end{array}
\]

- The last-occurrence function can be computed in time \(O(m + |\Sigma|) \)
- In practice, \(L \) is stored in a size-\(|\Sigma| \) array.
Good Suffix array

- Again, we **preprocess** P to build a table.
- **Suffix skip array** S of size m: for $0 \leq i < m$, $S[i]$ is the largest index j such that $P[i + 1..m - 1] = P[j + 1..j + m - 1 - i]$ and $P[j] \neq P[i]$.
- **Note:** in this calculation, any negative indices are considered to make the given condition true (these correspond to letters that we might not have checked yet).
- Similar to KMP failure array, with an extra condition.
- Computed similarly to KMP failure array in $\Theta(m)$ time.

Example: $P = \text{bonobobo}$

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>b</td>
<td>o</td>
<td>n</td>
<td>o</td>
<td>b</td>
<td>o</td>
<td>b</td>
<td>o</td>
</tr>
<tr>
<td>$S[i]$</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

- Computed similarly to KMP failure array in $\Theta(m)$ time.
Boyer-Moore Algorithm

\texttt{boyer-moore(T,P)}
1. \(L \leftarrow \) last occurrence array computed from \(P \)
2. \(S \leftarrow \) good suffix array computed from \(P \)
3. \(i \leftarrow m - 1, \quad j \leftarrow m - 1 \)
4. \textbf{while} \(i < n \) \textbf{and} \(j \geq 0 \) \textbf{do}
5. \quad \textbf{if} \(T[i] = P[j] \) \textbf{then}
6. \quad \quad \(i \leftarrow i - 1 \)
7. \quad \quad \(j \leftarrow j - 1 \)
8. \quad \textbf{else}
9. \quad \quad \(i \leftarrow i + m - 1 - \min(L[T[i]], S[j]) \)
10. \quad \quad \(j \leftarrow m - 1 \)
11. \quad \textbf{if} \(j = -1 \) \textbf{return} \(i + 1 \)
12. \quad \textbf{else return} FAIL

\textbf{Exercise:} Prove that \(i - j \) always increases on lines 9–10.

Boyer-Moore algorithm conclusion

\begin{itemize}
\item Worst-case running time \(\in O(n + |\Sigma|) \)
\item This complexity is difficult to prove.
\item Worst-case running time \(O(nm) \) if we want to report all occurrences
\item On typical \textbf{English text} the algorithm probes approximately 25% of the characters in \(T \)
\item Faster than KMP in practice on English text.
\end{itemize}
Rabin-Karp Fingerprint Algorithm

Idea: use hashing
- Compute hash function for each text position
- No explicit hash table: just compare with pattern hash
- If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Example:
Hash "table" size = 97
Search Pattern P: 5 9 2 6 5
Search Text T: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6
Hash function: h(x) = x mod 97 and h(P) = 95.
31415 mod 97 = 84
14159 mod 97 = 94
41592 mod 97 = 76
15926 mod 97 = 18
59265 mod 97 = 95

Guaranteeing correctness
Need full compare on hash match to guard against collisions
- 59265 mod 97 = 95
- 59362 mod 97 = 95

Running time
- Hash function depends on m characters
- Running time is $\Theta(mn)$ for search miss (how can we fix this?)
Rabin-Karp Fingerprint Algorithm

The initial hashes are called **fingerprints**. Rabin & Karp discovered a way to update these fingerprints in constant time.

Idea:
To go from the hash of a substring in the text string to the next hash value only requires constant time.

- Use previous hash to compute next hash
- $O(1)$ time per hash, except first one

Example:
Pre-compute: $10000 \mod 97 = 9$
Previous hash: $41592 \mod 97 = 76$
Next hash: $15926 \mod 97 = ??$

Observation:
\[
15926 \mod 97 = (41592 - (4 \times 10000)) \times 10 + 6
\]
\[
= (76 - (4 \times 9)) \times 10 + 6
\]
\[
= 406
\]
\[
= 18
\]
Rabin-Karp Fingerprint Algorithm

- Choose table size at random to be huge prime
- Expected running time is $O(m + n)$
- $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Main advantage:
- Extends to 2d patterns and other generalizations

Suffix Tries and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.

We will call a trie that stores all suffixes of a text T a **suffix trie**, and the compressed suffix trie of T a **suffix tree**.
Suffix Trees

- Build the suffix trie, i.e. the trie containing all the suffixes of the text
- Build the suffix tree by compressing the trie above (like in Patricia trees)
- Store two indexes l, r on each node v (both internal nodes and leaves) where node v corresponds to substring $T[l..r]$

Suffix Trie: Example

$T =$bananaban

$\{\text{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}\}$
Suffix Trees: Pattern Matching

To search for pattern P of length m:

- Similar to Search in compressed trie with the difference that we are looking for a prefix match rather than a complete match.
- If we reach a leaf with a corresponding string length less than m, then search is unsuccessful.
- Otherwise, we reach a node v (leaf or internal) with a corresponding string length of at least m.
- It only suffices to check the first m characters against the substring of the text between indices of the node, to see if there indeed is a match.
- We can then visit all children of the node to report all matches.
Suffix Tree: Example

$T = \text{bananaban}$

$P = \text{ana}$

Suffix Tree: Example

$T = \text{bananaban}$

$P = \text{ban}$
Suffix Tree: Example

\(T = \text{bananaban} \)

\(P = \text{nana} \)

Suffix Tree: Example

\(T = \text{bananaban} \)

\(P = \text{bbn} \) not found

Pattern Matching Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Brute-Force</th>
<th>DFA</th>
<th>KMP</th>
<th>BM</th>
<th>RK</th>
<th>Suffix trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preproc.</td>
<td>–</td>
<td>$O(m</td>
<td>\Sigma</td>
<td>)$</td>
<td>$O(m)$</td>
<td>$O(m +</td>
</tr>
<tr>
<td>Search time:</td>
<td>$O(nm)$</td>
<td>$O(n)$</td>
<td>$O(n)$ (often better)</td>
<td>$\tilde{O}(n + m)$ (expected)</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Extra space:</td>
<td>–</td>
<td>$O(m</td>
<td>\Sigma</td>
<td>)$</td>
<td>$O(m)$</td>
<td>$O(m +</td>
</tr>
</tbody>
</table>