Pattern Matching

- Search for a string (pattern) in a large body of text
- $T[0..n−1]$ – The text (or haystack) being searched within
- $P[0..m−1]$ – The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first i such that
 $$P[j] = T[i+j] \quad \text{for} \quad 0 \leq j \leq m−1$$
- This is the first occurrence of P in T
- If P does not occur in T, return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining

Example:
- T = “Where is he?”
- P_1 = “he”
- P_2 = “who”

Definitions:
- **Substring** $T[i..j]$ $0 \leq i \leq j < n$: a string of length $j − i + 1$ which consists of characters $T[i], T[i+1], \ldots, T[j]$ in order
- A **prefix** of T:
 - a substring $T[0..i]$ of T for some $0 \leq i < n$
- A **suffix** of T:
 - a substring $T[i..n−1]$ of T for some $0 \leq i \leq n−1$
General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:
- A guess is a position i such that P might start at $T[i]$. Valid guesses (initially) are $0 \leq i \leq n - m$.
- A check of a guess is a single position j with $0 \leq j < m$ where we compare $T[i+j]$ to $P[j]$. We must perform m checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

```
BruteforcePM(T[0..n-1], P[0..m-1])
T: String of length n (text), P: String of length m (pattern)
1. for i ← 0 to n - m do
2.   match ← true
3.   j ← 0
4.   while j < m and match do
5.     if T[i+j] = P[j] then
6.       j ← j + 1
7.     else
8.       match ← false
9.     if match then
10.    return i
11.   return FAIL
```

Example

- Example: $T = abbbabbbab$, $P = abba$

```
  a  b  b  a  a  b  a  b  a  b  a
  a  b  b  a  a  b  a  b  a  b  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
  a  a  a  a  a  a  a  a  a  a  a
```

- What is the worst possible input?
 $P = a^{m-1}b$, $T = a^n$

- Worst case performance $\Theta((n - m + 1)m)$
- $m \leq n/2 \Rightarrow \Theta(mn)$
Pattern Matching

More sophisticated algorithms
- Deterministic finite automata (DFA)
- KMP, Boyer-Moore and Rabin-Karp
- Do extra preprocessing on the pattern P
- We eliminate guesses based on completed matches and mismatches.

String matching with finite automata
There is a string-matching automaton for every pattern P. It is constructed from the pattern in a preprocessing step before it can be used to search the text string.

Example: Automaton for the pattern $P = \text{ababaca}$

Let P the pattern to search, of length m. Then
- the states of the automaton are $0, \ldots, m$
- the transition function δ of the automaton is defined as follows, for a state q and a character c in Σ:
 \[\delta(q, c) = \ell(P[0..q-1]c), \]
 where
 - $P[0..q-1]c$ is the concatenation of $P[0..q-1]$ and c
 - for a string s, $\ell(s) \in \{0, \ldots, m\}$ is the length of the longest prefix of P that is also a suffix of s.

Graphically, this corresponds to

\[
\begin{array}{c}
q \\
\rightarrow \\
\delta(q, c) \\
\end{array}
\]
String matching with finite automata

Let T be the text string of length n,
P the pattern to search of length m and
δ the transition function of a finite automaton for pattern P.

FINITE-AUTOMATON-MATCHER(T, δ, m)

$n \leftarrow \text{length}[T]$
$q \leftarrow 0$
for $i \leftarrow 0 \text{ to } n - 1$ do
 $q \leftarrow \delta(q, T[i])$
 if $q = m$
 then print "Pattern occurs with shift" $i - (m - 1)$

Idea of proof: the state after reading $T[i]$ is $\ell(T[0..i])$.

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 10 / 51

String matching with finite automata

- Matching time on a text string of length n is $\Theta(n)$
- This does not include the preprocessing time required to compute the transition function δ. There exists an algorithm with $O(m|\Sigma|)$ preprocessing time.
- Altogether, we can find all occurrences of a length-m pattern in a length-n text over a finite alphabet Σ with $O(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 11 / 51

KMP Algorithm

- Knuth-Morris-Pratt algorithm (1977)
- Compares the pattern to the text in left-to-right
- Shifts the pattern more intelligently than the brute-force algorithm
- When a mismatch occurs, how much can we shift the pattern (reusing knowledge from previous matches)?

$$T = \begin{array}{cccccccc}
a & b & c & d & c & a & b & c \\
\hline
a & b & c & d & c & a & b & a \\
\hline
\hline
a & b & c & d & c & a
\end{array}$$

- **KMP Answer:** this depends on the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 12 / 51
KMP Failure Array

T: a b b c a b c d...
P: a b b c a b a a

what next slide would match with the text?
KMP Failure Array

Suppose we have a match up to position \(T[i - 1] = P[j - 1] \), but not at the next position.

Define \(F[j - 1] \) as the index we will have to check in \(P \), after we bring the pattern to its next possible position (previous example: \(j = 6, F[5] = 2 \)).

This can be computed by trying all sliding positions until finding the first one matching the text (as in previous example). We can do better:

- any possible sliding position corresponds to a prefix of \(P[0..j - 1] \) that is also a strict suffix of it = a suffix of \(P[1..j - 1] \)
- the next possible sliding position corresponds to the largest such prefix / suffix
- we let \(F[j - 1] \) be the length of this prefix / suffix.
KMP Failure Array

Schematically:

\[T \quad P \]

First mismatch at \(j = j - 1 \)

Next slide that matches with \(T \)

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 21 / 51
KMP Failure Array

Schematically:

<table>
<thead>
<tr>
<th>j</th>
<th>P[1..j]</th>
<th>P</th>
<th>F[j]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ba</td>
<td>abacaba</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>bac</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>baca</td>
<td>abacaba</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>bacab</td>
<td>abacaba</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>bacaba</td>
<td>abacaba</td>
<td>3</td>
</tr>
</tbody>
</table>
Computing the Failure Array

\[\text{failureArray}(P) \]
\[P: \text{String of length } m \text{ (pattern)} \]

1. \[F[0] \leftarrow 0 \]
2. \[i \leftarrow 1 \]
3. \[j \leftarrow 0 \]
4. \[\text{while } i < m \text{ do} \]
5. \[\quad \text{if } P[i] = P[j] \text{ then} \]
6. \[\quad F[i] \leftarrow j + 1 \]
7. \[\quad i \leftarrow i + 1 \]
8. \[\quad j \leftarrow j + 1 \]
9. \[\quad \text{else if } j > 0 \text{ then} \]
10. \[\quad j \leftarrow F[j - 1] \]
11. \[\quad \text{else} \]
12. \[\quad F[i] \leftarrow 0 \]
13. \[\quad i \leftarrow i + 1 \]

KMP Algorithm

\[\text{KMP}(T, P), \text{ to return the first match} \]
\[T: \text{String of length } n \text{ (text)}, P: \text{String of length } m \text{ (pattern)} \]

1. \[F \leftarrow \text{failureArray}(P) \]
2. \[i \leftarrow 0 \]
3. \[j \leftarrow 0 \]
4. \[\text{while } i < n \text{ do} \]
5. \[\quad \text{if } T[i] = P[j] \text{ then} \]
6. \[\quad \quad \text{if } j = m - 1 \text{ then} \]
7. \[\quad \quad \quad \text{return } i - j \text{ //match} \]
8. \[\quad \quad \text{else} \]
9. \[\quad \quad \quad i \leftarrow i + 1 \]
10. \[\quad \quad \quad j \leftarrow j + 1 \]
11. \[\quad \text{else} \]
12. \[\quad \quad \text{if } j > 0 \text{ then} \]
13. \[\quad \quad \quad j \leftarrow F[j - 1] \]
14. \[\quad \quad \text{else} \]
15. \[\quad \quad \quad i \leftarrow i + 1 \]
16. \[\text{return } -1 \text{ // no match} \]

KMP: Example

\[P = \text{abacaba} \]
\[T = \text{abaxyabacabbaabacaba} \]

Exercise: continue with \(T = \text{abaxyabacabbaabacaba} \)
KMP: Analysis

failureArray

- At each iteration of the while loop, at least one of the following happens:
 1. \(i \) increases by one, or
 2. the index \(i - j \) increases by at least one (\(F[j - 1] < j \))
- There are no more than \(2m \) iterations of the while loop
- Running time: \(\Theta(m) \)

KMP

- failureArray can be computed in \(\Theta(m) \) time
- At each iteration of the while loop, at least one of the following happens:
 1. \(i \) increases by one, or
 2. the index \(i - j \) increases by at least one (\(F[j - 1] < j \))
- There are no more than \(2n \) iterations of the while loop
- Running time: \(\Theta(n) \)

Boyer-Moore Algorithm

Based on three key ideas:

- **Reverse-order searching**: Compare \(P \) with a subsequence of \(T \) moving backwards
- **Bad character jumps**: When a mismatch occurs at \(T[i] = c \)
 - If \(P \) contains \(c \), we can shift \(P \) to align the last occurrence of \(c \) in \(P \) with \(T[i] \)
 - Otherwise, we can shift \(P \) to align \(P[0] \) with \(T[i + 1] \)
- **Good suffix jumps**: If we have already matched a suffix of \(P \), then get a mismatch, we can shift \(P \) forward to align with the previous occurrence of that suffix (with a mismatch from the suffix we read). If none exists, look for the longest prefix of \(P \) that is a suffix of what we read. Similar to failure array in KMP.
- Can skip large parts of \(T \)

Bad character examples

\[P = a l d o \]
\[T = w h e r e i s w a l d o \]

6 comparisons (checks)

\[P = m o o r e \]
\[T = b o y e r m o o r e \]

7 comparisons (checks)
Good suffix examples

$P = \text{sells_shells}$

```
sheila       sells       shells
helia        s (e) (l) (l) (s) shells
```

$P = \text{odetofood}$

```
likefood    frommexico
ofood       (e) (o)(d) dd
```

- Good suffix moves further than bad character for 2nd guess.
- Bad character moves further than good suffix for 3rd guess.
- This is out of range, so pattern not found.

Last-Occurrence Function

- **Preprocess** the pattern P and the alphabet Σ
- **Build the last-occurrence function** L mapping Σ to integers
 - $L(c)$ is defined as
 - the largest index i such that $P[i] = c$ or
 - -1 if no such index exists
 - Example: $\Sigma = \{a, b, c, d\}, P = abacab$

```
<table>
<thead>
<tr>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(c)</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>
```

- The last-occurrence function can be computed in time $O(m + |\Sigma|)$
- In practice, L is stored in a size-$|\Sigma|$ array.

Good Suffix array

- Again, we **preprocess** P to build a table.
- **Suffix skip array** S of size m: for $0 \leq i < m$, $S[i]$ is the largest index j such that $P[i+1..m-1] = P[j+1..j+m-1-i]$ and $P[j] \neq P[i]$.
- **Note**: in this calculation, any negative indices are considered to make the given condition true (these correspond to letters that we might not have checked yet).
- Similar to KMP failure array, with an extra condition.
- Computed similarly to KMP failure array in $\Theta(m)$ time.
Good Suffix array

Example: $P = \text{bonobobo}$

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>b</td>
<td>o</td>
<td>n</td>
<td>o</td>
<td>b</td>
<td>o</td>
<td>b</td>
<td>o</td>
</tr>
<tr>
<td>$S[i]$</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

- Computed similarly to KMP failure array in $\Theta(m)$ time.

Boyer-Moore Algorithm

```python
def boyer-moore(T, P):
    1. $L \leftarrow$ last occurrence array computed from $P$
    2. $S \leftarrow$ good suffix array computed from $P$
    3. $i \leftarrow m - 1$, $j \leftarrow m - 1$
    4. while $i < n$ and $j \geq 0$
       5. if $T[i] = P[j]$ then
          6. $i \leftarrow i - 1$
          7. $j \leftarrow j - 1$
       8. else
          9. $i \leftarrow i + m - 1 - \min(L[T[i]], S[j])$
          10. $j \leftarrow m - 1$
       11. if $j = -1$ return $i + 1$
       12. else return FAIL
```

Exercise: Prove that $i - j$ always increases on lines 9–10.

Boyer-Moore algorithm conclusion

- Worst-case running time $\in O(n + |\Sigma|)$
- This complexity is difficult to prove.
- Worst-case running time $O(nm)$ if we want to report all occurrences
- On typical English text the algorithm probes approximately 25% of the characters in T
- Faster than KMP in practice on English text.
Rabin-Karp Fingerprint Algorithm

Idea: use hashing
 o Compute hash function for each text position
 o No explicit hash table: just compare with pattern hash
 o If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Example:
Hash "table" size = 97
Search Pattern P: 5 9 2 6 5
Search Text T: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6
Hash function: \(h(x) = x \mod 97 \) and \(h(P) = 95 \).
31415 mod 97 = 84
14159 mod 97 = 94
41592 mod 97 = 76
15926 mod 97 = 18
59265 mod 97 = 95

Guaranteeing correctness
Need full compare on hash match to guard against collisions
 ▶ 59265 mod 97 = 95
 ▶ 59362 mod 97 = 95

Running time
 o Hash function depends on \(m \) characters
 o Running time is \(\Theta(mn) \) for search miss (how can we fix this?)

The initial hashes are called fingerprints.
Rabin & Karp discovered a way to update these fingerprints in constant time.

Idea:
To go from the hash of a substring in the text string to the next hash value only requires constant time.
 o Use previous hash to compute next hash
 o \(O(1) \) time per hash, except first one
Rabin-Karp Fingerprint Algorithm

Example:
- Pre-compute: $10000 \mod 97 = 9$
- Previous hash: $41592 \mod 97 = 76$
- Next hash: $15926 \mod 97 = ??$

Observation:

$$15926 \mod 97 = (41592 - (4 \times 10000)) \times 10 + 6$$
$$= (76 - (4 \times 9)) \times 10 + 6$$
$$= 406$$
$$= 18$$

Rabin-Karp Fingerprint Algorithm

- Choose table size at random to be huge prime
- Expected running time is $O(m + n)$
- $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Main advantage:
- Extends to 2d patterns and other generalizations

Suffix Tries and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.

We will call a trie that stores all suffixes of a text T a suffix trie, and the compressed suffix trie of T a suffix tree.
Suffix Trees

- Build the suffix trie, i.e. the trie containing all the suffixes of the text
- Build the suffix tree by compressing the trie above (like in Patricia trees)
- Store two indexes l, r on each node v (both internal nodes and leaves) where node v corresponds to substring $T[l..r]$

Suffix Trie: Example

$T = \text{bananaban}$

$\{\text{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}\}$

Suffix Tree (compressed suffix trie): Example

$T = \text{bananaban}$

$\{\text{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}\}$
Suffix Trees: Pattern Matching

To search for pattern P of length m:
- Similar to Search in compressed trie with the difference that we are looking for a prefix match rather than a complete match
- If we reach a leaf with a corresponding string length less than m, then search is unsuccessful
- Otherwise, we reach a node v (leaf or internal) with a corresponding string length of at least m
 It only suffices to check the first m characters against the substring of the text between indices of the node, to see if there indeed is a match
- We can then visit all children of the node to report all matches
Suffix Tree: Example

\(T = \text{bananaban} \)

\(P = \text{nana} \)

Pattern Matching Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Brute-Force</th>
<th>DFA</th>
<th>KMP</th>
<th>BM</th>
<th>RK</th>
<th>Suffix trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preproc.</td>
<td>–</td>
<td>(O(m</td>
<td>\Sigma</td>
<td>))</td>
<td>(O(m))</td>
<td>(O(m +</td>
</tr>
<tr>
<td>Search time:</td>
<td>(O(nm))</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n)) (often better)</td>
<td>(O(n + m)) (expected)</td>
<td>(O(m))</td>
</tr>
<tr>
<td>Extra space:</td>
<td>–</td>
<td>(O(m</td>
<td>\Sigma</td>
<td>))</td>
<td>(O(m))</td>
<td>(O(m +</td>
</tr>
</tbody>
</table>