
University of Waterloo

CS240 - Fall 2018
Assignment 2

Due Date: Wednesday October 3 at 5pm

Please read http://www.student.cs.uwaterloo.ca/~cs240/f18/guidelines.pdf for
guidelines on submission. Problems 1 – 5(a) are written problems; submit your solutions
electronically as a PDF with file name a02wp.pdf using MarkUs. We will also accept indi-
vidual question files named a02q1w.pdf, a02q2w.pdf, ... ,a02q5w.pdf if you wish to submit
questions as you complete them. Submit your solution to 5(b) electronically as a file named
report.cpp.

There are 57 possible marks available. The assignment will be marked out of 55.

Problem 1 [10 marks]

Starting with an empty heap, show the max-heap resulting from insertion of 28, 37, 55,
31, 22, 40, 7. Show the heap, drawn as a binary tree, after each insert operation. Then,
perform three deleteMax operations, and show the heap, drawn as a binary tree, after each
operation.

Problem 2 [5+5+5=15 marks]

Consider a very keen teaching assistant. As students arrive during office hour she assigns
a priority number to each student corresponding to their time of arrival and inserts the
pair (time, name) into a priority queue, implemented as a min-heap. The next student is
determined with a call to deleteMin. The student then has five minutes to ask as many
questions as possible before being re-inserted in the queue with the current time as priority.

Occasionally students leave before their turn comes up. Describe how to perform a delete
key operation in a heap under each of the following assumptions:

a) The input for the delete operation is the student name only, assumed to be unique.

b) The input for the delete operation is the priority value in the heap, again assumed to
be unique.

c) The input to the delete operation is the index of the entry in the array where the key
resides.

In each case the priority queue is implemented as a heap using an array. After the delete
operation the array should still be a heap. For each implementation discuss the time com-
plexity of the operation in the worst case. The running time of all of your methods should
be O(n), and at least one of the methods should have running time o(n).

1

http://www.student.cs.uwaterloo.ca/~cs240/f18/guidelines.pdf


Problem 3 [10 marks]

A sorting algorithm is said to sort in place if only a constant number of elements of the
input are ever stored outside the array. But suppose are given an array A[0 . . . n − 1] that
contains a permutation of the first n non-negative integers. Allowing non comparison based
algorithms, give an O(n) in place algorithm to sort A. Analyze the the running time of your
method. Note: For simplicity we are assuming A is filled with integer keys. Your algorithm
must easily extend to work for an array A that is filled with (key,element) pairs, each integer
key in the range 0 . . . n− 1 occurring exactly once.

Problem 4 [4+6=10 marks]

A deterministic algorithm is one whose execution depends only on the input. By contrast,
the execution of a randomized algorithm depends also on some randomly-chosen numbers.
A Las Vegas randomized algorithm always produces the correct answer, but has a running
time which depends on the random numbers chosen (randomized quick-select and quick-sort
are of this type). Informally, such algorithms are always correct, and probably fast. A
Monte Carlo randomized algorithm has running time independent of the random numbers
chosen, but may produce an incorrect answer. Informally, such algorithms are always fast,
and probably correct.

Given an array A of length n, an element x is said to be dominant in A if x occurs at
least bn/2c+ 1 times in A. That is, copies of x occupy more than half of the array.

a) [4 marks] Given an array A that contains a dominant element, describe an in-place
Monte Carlo randomized algorithm to find the dominant element. Show that your
algorithm has worst-case running time O(1) and returns the correct answer with prob-
ability at least 1/2.

b) [6 marks] Given an array A that contains a dominant element, describe an in-place Las
Vegas randomized algorithm to find the dominant element. Show that your algorithm
always returns the correct answer, and has expected-case running time O(n).

Problem 5 [6+6=12 marks]

You are given an array A[0 . . . n− 1] of integers (not necessarily distinct) that forms a max-
heap of size n.

a) Describe an algorithm that takes as input an integer c, not necessarily in the heap,
and reports all integers in the heap that are greater than or equal to c. The running
time of your algorithm should be O(k), where k is the number of integers reported.
Provide a brief explanation for why the running time of your algorithm is O(k).

b) Implement your algorithm from part (a). Your program should read from cin the size
n, then the n integers in the heap A[0 . . . n − 1], and finally the integer c, and then
write to cout the integers in the heap that are greater than or equal to c. You may

2



assume that every integer in the input is at least 0 and at most 231−1 (so every integer
will fit into a variable of type int).

Every integer in the input and output should be on a separate line. So for instance if
the input consists of the following lines:

5

17

15

13

10

3

12

then your program should print out the integers 17, 15, and 13 in any order (and on
separate lines).

Submit the code for your main function, along with any helper functions, in a file called
report.cpp.

3


