Module 5: Other Dictionary Implementations

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Sedgewick 9.1-9.4
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations we have seen so far:

- **Unordered array or linked list**: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array**: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Binary search trees**: $\Theta(\text{height})$ search, insert and delete
- **Balanced BST (AVL trees)**: $\Theta(\log n)$ search, insert, and delete

Improvements/Simplifications?

- **Can show**: The average-case height of binary search trees (over all possible insertion sequences) is $O(\log n)$.
- How can we shift the average-case to expected height via randomization?
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Skip Lists

- A hierarchy S of ordered linked lists (levels) S_0, S_1, \cdots, S_h:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
 - List S_0 contains the KVPs of S in non-decreasing order.
 (The other lists store only keys, or links to nodes in S_0.)
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the sentinels; the left sentinel is the root

- Each KVP belongs to a tower of nodes
- There are (usually) more nodes than keys
- The skip list consists of a reference to the topmost left node.
- Each node p has references $p.after$ and $p.below$
Search in Skip Lists

For each level, find \texttt{predecessor} (node before where \(k\) would be).
This will also be useful for \texttt{insert}/\texttt{delete}.

\begin{boxedverbatim}
\textbf{getPredecessors} \((k)\)
1. \(p \leftarrow \) topmost left sentinel
2. \(P \leftarrow \) stack of nodes, initially containing \(p\)
3. \textbf{while} \(p.below \neq \text{NIL}\) \textbf{do}
4. \hspace{0.5cm} \(p \leftarrow p.below\)
5. \hspace{0.5cm} \textbf{while} \(p.after.key < k\) \textbf{do} \(p \leftarrow p.after\)
6. \hspace{0.5cm} \(P.push(p)\)
7. \textbf{return} \(P\)
\end{boxedverbatim}

\begin{boxedverbatim}
\textbf{skipList::search} \((k)\)
1. \(P \leftarrow \text{getPredecessors}(k)\)
2. \(p_0 \leftarrow P.top()\) // predecessor of \(k\) in \(S_0\)
3. \textbf{if} \(p_0.after.key = k\) \textbf{return} \(p_0.after\)
4. \textbf{else return} “not found, but would be after \(p_0\)”
\end{boxedverbatim}
Example: Search in Skip Lists

Example: search(87)

-∞ S₁ 37 65 83 ∞
-∞ S₂ 65 ∞
-∞ S₃ ∞

key compared with k
added to P

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 5 / 17
Insert in Skip Lists

```
skipList::insert(k, v)
```

- Randomly repeatedly toss a coin until you get tails
- Let \(i \) the number of times the coin came up heads
 - we want \(k \) to be in lists \(S_0, \ldots, S_i \).
 - \(i \rightarrow \text{height} \) of tower of \(k \)
 - \(P(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i \)
- Increase height of skip list, if needed, to have \(h > i \) levels.
- Use \(\text{getPredecessors}(k) \) to get stack \(P \).
 - The top \(i \) items of \(P \) are the predecessors \(p_0, p_1, \ldots, p_i \) of where \(k \) should be in each list \(S_0, S_1, \ldots, S_i \)
- Insert \((k, v)\) after \(p_0 \) in \(S_0 \), and \(k \) after \(p_j \) in \(S_j \) for \(1 \leq j \leq i \)
Example: Insert in Skip Lists

Example: `skipList::insert(52, v)`

Coin tosses: H,T ⇒ i = 1

`getPredecessors(52)`
Example 2: Insert in Skip Lists

Example: \texttt{skipList::insert}(100, \nu)
Insert in Skip Lists

\(\text{skipList::insert}(k, v) \)
1. \(P \leftarrow \text{getPredecessors}(k) \)
2. \(\text{for } (i \leftarrow 0; \text{random}(2) = 1;i \leftarrow i+1) \{ \} \quad \text{// random tower height} \)
3. \(\text{while } i \geq P.\text{size()} \quad \text{// increase skip-list height?} \)
4. \(\text{root} \leftarrow \text{new sentinel-only list,} \)
 \(\quad \text{linked to previous root-list appropriately} \)
5. \(P.\text{append}(\text{left sentinel of root}) \)
6. \(p \leftarrow P.\text{pop()} \quad \text{// insert }(k, v)\text{ in } S_0 \)
7. \(k_{\text{below}} \leftarrow \text{new node with }(k, v), \text{inserted after } p \)
8. \(\text{while } i > 0 \quad \text{// insert } k \text{ in } S_1, \ldots, S_i \)
9. \(p \leftarrow P.\text{pop()} \)
10. \(k_{\text{below}} \leftarrow \text{new node with } k, \)
 \(\quad \text{inserted after } p \text{ with below-reference to } k_{\text{below}} \)
11. \(i \leftarrow i - 1 \)
Delete in Skip Lists

It is easy to remove a key since we can find all predecessors. Then eliminate layers if there are multiple ones with only sentinels.

```cpp
skipList::delete(k)
1. P ← getPredecessors(k)
2. while P is non-empty
3. p ← P.pop()  // predecessor of k in some layer
4. if p.after.key = k
5. p.after ← p.after.after
6. else break  // no more copies of k
7. p ← left sentinel of the root-list
8. while p.below.after is the ∞-sentinel
   // the two top lists are both only sentinels, remove one
9. p.below ← p.below.below
10. p.after.below ← p.after.below.below
```
Example: Delete in Skip Lists

Example: \textit{skipList::delete}(65)
Analysis of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$
 A skip list with n items has height at most $3 \log n$ with probability at least $1 - 1/n^2$
- Crucial for all operations:
 ▶ How often do we drop down (execute $p \leftarrow p.\text{below}$)?
 ▶ How often do we scan forward (execute $p \leftarrow p.\text{after}$)?
- `skipList::search`: $O(\log n)$ expected time
 ▶ # drop-downs = height
 ▶ expected # scan-forwards is ≤ 1 in each level
- `skipList::insert`: $O(\log n)$ expected time
- `skipList::delete`: $O(\log n)$ expected time
Summary of Skip Lists

- $O(n)$ expected space, all operations take $O(\log n)$ expected time.
- As described they are no faster than randomized binary search trees.
- Can show: A biased coin-flip to determine tower-height gives smaller expected run-times.
- Can save links (hence space) by implementing towers as array.

Then skip lists are fast in practice and simple to implement.
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Re-ordering Items

- Recall: Unordered list/array implementation of ADT Dictionary
 - \(\text{search}: \Theta(n), \text{insert}: \Theta(1), \text{delete}: \Theta(1) \) (after a search)
- Lists/arrays are a very simple and popular implementation. Can we do something to make search more effective in practice?
- No: if items are accessed equally likely
- Yes: otherwise (we have a probability distribution of the items)
 - Intuition: Frequently accessed items should be in the front.
 - Two cases: Do we know the access distribution beforehand or not?
 - For short lists or extremely unbalanced distributions this may be faster than AVL trees or Skip Lists, and much easier to implement.
Optimal Static Ordering

Example:

<table>
<thead>
<tr>
<th>key</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency of access</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>access-probability</td>
<td>$\frac{2}{26}$</td>
<td>$\frac{8}{26}$</td>
<td>$\frac{1}{26}$</td>
<td>$\frac{10}{26}$</td>
<td>$\frac{5}{26}$</td>
</tr>
</tbody>
</table>

- We count cost i for accessing the key in the ith position.
- Order A, B, C, D, E has expected access cost
 \[
 \frac{2}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{1}{26} \cdot 3 + \frac{10}{26} \cdot 4 + \frac{5}{26} \cdot 5 = \frac{86}{26} \approx 3.31
 \]
- Order D, B, E, A, C has expected access cost
 \[
 \frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54
 \]

- **Claim**: Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.
- **Proof Idea**: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Dynamic Ordering: MTF

- What if we do *not know the access probabilities* ahead of time?
- Rule of thumb (**temporal locality**): A recently accessed item is likely to be used soon again.
- In list: Always insert at the front
- **Move-To-Front heuristic (MTF):** Upon a successful search, move the accessed item to the front of the list

![Diagram of MTF operations]

- We can also do MTF on an array, but should then insert and search from the *back* so that we have room to grow.
Dynamic Ordering: Transpose

Transpose heuristic: Upon a successful search, swap the accessed item with the item immediately preceding it.

```
A → B → C → D → E
↓ search(D)
A → B → D → C → E
↓ insert(F)
F → A → B → D → C → E
```

Performance of dynamic ordering:
- Transpose does not adapt quickly to changing access patterns.
- MTF works well in practice.
- **Can show:** MTF is “2-competitive”:
 No more than twice as bad as the optimal static ordering.