Module 1: Introduction and Asymptotic Analysis

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Goodrich & Tamassia 1.1, 1.2, 1.3
Sedgewick 8.2, 8.3
Outline

1 Introduction and Asymptotic Analysis
 • CS240 Overview
 • Algorithm Design
 • Analysis of Algorithms I
 • Asymptotic Notation
 • Analysis of Algorithms II
 • Example: Analysis of MergeSort
 • Helpful Formulas
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Course Objectives: What is this course about?

- When first learning to program, we emphasize correctness: does your program output the expected results?
- Starting with this course, we will also be concerned with efficiency: is your program using the computer’s resources (typically processor time) efficiently?
- We will study efficient methods of storing, accessing, and organizing large collections of data.
- Typical operations include: inserting new data items, deleting data items, searching for specific data items, sorting.
- Motivating examples: Digital Music Collection, English Dictionary
Course Objectives: What is this course about?

- We will consider various **abstract data types** (ADTs) and how to implement them efficiently using appropriate **data structures**.
- There is a strong emphasis on mathematical analysis in the course.
- Algorithms are presented using pseudo-code and analyzed using order notation (big-Oh, etc.).
Course Topics

- big-Oh analysis
- priority queues and heaps
- sorting, selection
- binary search trees, AVL trees, B-trees
- skip lists
- hashing
- quadtrees, kd-trees
- range search
- tries
- string matching
- data compression
CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

- arrays, linked lists (Sec. 3.2–3.4)
- strings (Sec. 3.6)
- stacks, queues (Sec. 4.2–4.6)
- abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
- recursive algorithms (5.1)
- binary trees (5.4–5.7)
- sorting (6.1–6.4)
- binary search (12.4)
- binary search trees (12.5)
- probability and expectations (Goodrich & Tamassia, Section 1.3.4)
Outline

1. Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Problems (terminology)

First, we must introduce terminology so that we can precisely characterize what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational task.

Problem Instance: *Input* for the specified problem.

Problem Solution: *Output* (correct answer) for the specified problem instance.

Size of a problem instance: \(\text{Size}(I) \) is a positive integer which is a measure of the size of the instance \(I \).

Example: Sorting problem
Algorithms and Programs

Algorithm: An algorithm is a *step-by-step process* (e.g., described in pseudo-code) for carrying out a series of computations, given an arbitrary problem instance I.

Solving a problem: An Algorithm A *solves* a problem Π if, for every instance I of Π, A finds (computes) a valid solution for the instance I in finite time.

Program: A program is an *implementation* of an algorithm using a specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or programming).
Algorithms and Programs

Pseudocode: a method of communicating an algorithm to another person.

In contrast, a program is a method of communicating an algorithm to a computer.

Pseudocode

- omits obvious details, e.g. variable declarations,
- has limited if any error detection,
- sometimes uses English descriptions,
- sometimes uses mathematical notation.
Algorithms and Programs

For a problem Π, we can have several algorithms.

For an algorithm \mathcal{A} solving Π, we can have several programs (implementations).

Algorithms in practice: Given a problem Π

1. Design an algorithm \mathcal{A} that solves Π. \rightarrow Algorithm Design
2. Assess correctness and efficiency of \mathcal{A}. \rightarrow Algorithm Analysis
3. If acceptable (correct and efficient), implement \mathcal{A}.

Petrick (SCS, UW)
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Efficiency of Algorithms/Programs

- How do we decide which algorithm or program is the most efficient solution to a given problem?

- In this course, we are primarily concerned with the amount of time a program takes to run. → **Running Time**

- We also may be interested in the amount of additional memory the program requires. → **Auxiliary space**

- The amount of time and/or memory required by a program will depend on **Size(I)**, the size of the given problem instance I.
First option: *experimental studies*

- Write a program implementing the algorithm.
- Run the program with inputs of varying size and composition.
- Use a method like `clock()` (from `time.h`) to get an accurate measure of the actual running time.
- Plot/compare the results.
Running Time of Algorithms/Programs

Shortcomings of experimental studies

- Implementation may be complicated/costly.
- Timings are affected by many factors: hardware (processor, memory), software environment (OS, compiler, programming language), and human factors (programmer).
- We cannot test all inputs; what are good sample inputs?
- We cannot easily compare two algorithms/programs.

We want a framework that:

- Does not require implementing the algorithm.
- Is independent of the hardware/software environment.
- Takes into account all input instances.

We need some simplifications.
We will develop several aspects of algorithm analysis in the next slides. To overcome dependency on hardware/software:

- Algorithms are presented in structured high-level *pseudo-code* which is language-independent.
- Analysis of algorithms is based on an *idealized computer model*.
- Instead of time, count the number of *primitive operations*.
- The efficiency of an algorithm (with respect to time) is measured in terms of its *growth rate* (this is called the *complexity* of the algorithm).
Random Access Machine

Random Access Machine (RAM) model:

- A set of memory cells, each of which stores one item (word) of data. Implicit assumption: memory cells are big enough to hold the items that we store.

- Any *access to a memory location* takes constant time.

- Any *primitive operation* takes constant time. Implicit assumption: primitive operations have fairly similar, though different, running time on different systems.

- The *running time* of a program is proportional to the number of memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a “real” computer.
Running Time Simplifications

We will simplify our analysis by considering the behaviour of algorithms for large inputs sizes.

- **Example 1:** What is larger, $100n$ or $10n^2$?
- **Example 2:** What is larger, $1000000n + 200000000000000$ or $0.01n^2$?

To simplify comparisons, use **order notation**

Informally: ignore constants and lower order terms
Outline

1. Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Order Notation

O-notation: $f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$.

Example: $f(n) = 75n + 500$ and $g(n) = 5n^2$ (e.g. $c = 1, n_0 = 20$)

Note: The absolute value signs in the definition are irrelevant for analysis of run-time or space, but are useful in other applications of asymptotic notation.
Example of Order Notation

In order to prove that \(2n^2 + 3n + 11 \in O(n^2) \) from first principles, we need to find \(c \) and \(n_0 \) such that the following condition is satisfied:

\[
0 \leq 2n^2 + 3n + 11 \leq c n^2 \text{ for all } n \geq n_0.
\]

Note that not all choices of \(c \) and \(n_0 \) will work.
Aymptotic Lower Bound

- We have $2n^2 + 3n + 11 \in O(n^2)$.
- But we also have $2n^2 + 3n + 11 \in O(n^{10})$.
- We want a \textit{tight} asymptotic bound.

\textbf{Ω-notation:} $f(n) \in \Omega(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $c \mid g(n) \mid \leq \mid f(n) \mid$ for all $n \geq n_0$.

\textbf{Θ-notation:} $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $c_1 \mid g(n) \mid \leq \mid f(n) \mid \leq c_2 \mid g(n) \mid$ for all $n \geq n_0$.

$$f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))$$
Example of Order Notation

Prove that $f(n) = 2n^2 + 3n + 11 \in \Omega(n^2)$ from first principles.

Prove that $\frac{1}{2}n^2 - 5n \in \Omega(n^2)$ from first principles.

Prove that $\log_b(n) \in \Theta(\log n)$ for all $b > 1$ from first principles.
Strictly smaller/larger asymptotic bounds

- We have $f(n) = 2n^2 + 3n + 11 \in \Theta(n^2)$.
- How to express that $f(n)$ is *asymptotically strictly smaller* than n^3?

o-notation: $f(n) \in o(g(n))$ if for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$.

ω-notation: $f(n) \in \omega(g(n))$ if $g(n) \in o(f(n))$.

- Rarely proved from first principles.
Algebra of Order Notations

Identity rule: \(f(n) \in \Theta(f(n)) \)

Transitivity:
- If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \) then \(f(n) \in O(h(n)) \).
- If \(f(n) \in \Omega(g(n)) \) and \(g(n) \in \Omega(h(n)) \) then \(f(n) \in \Omega(h(n)) \).

Maximum rules: Suppose that \(f(n) > 0 \) and \(g(n) > 0 \) for all \(n \geq n_0 \). Then:
- \(O(f(n) + g(n)) = O(\max\{f(n), g(n)\}) \)
- \(\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\}) \)
Techniques for Order Notation

Suppose that \(f(n) > 0 \) and \(g(n) > 0 \) for all \(n \geq n_0 \). Suppose that

\[
L = \lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \text{(in particular, the limit exists)}.
\]

Then

\[
f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty.
\end{cases}
\]

The required limit can often be computed using \(l'Hôpital's rule \). Note that this result gives \textit{sufficient} (but not necessary) conditions for the stated conclusions to hold.
Example 1

Let $f(n)$ be a polynomial of degree $d \geq 0$:

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \cdots + c_1 n + c_0$$

for some $c_d > 0$.

Then $f(n) \in \Theta(n^d)$:
Example 2

Prove that \(n(2 + \sin n\pi/2) \) is \(\Theta(n) \). Note that \(\lim_{n \to \infty} (2 + \sin n\pi/2) \) does not exist.
Example 2

Prove that \(n(2 + \sin n\pi/2) \) is \(\Theta(n) \). Note that \(\lim_{n \to \infty} (2 + \sin n\pi/2) \) does not exist.
Relationships between Order Notations

- $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

- $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \not\in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \not\in O(g(n))$
• If \(f(n) \in \Theta(g(n)) \), then the growth rates of \(f(n) \) and \(g(n) \) are the same.

• If \(f(n) \in o(g(n)) \), then we say that the growth rate of \(f(n) \) is less than the growth rate of \(g(n) \).

• If \(f(n) \in \omega(g(n)) \), then we say that the growth rate of \(f(n) \) is greater than the growth rate of \(g(n) \).

• Typically, \(f(n) \) may be “complicated” and \(g(n) \) is chosen to be a very simple function.
Example 3

Compare the growth rates of $\log n$ and n.

Now compare the growth rates of $(\log n)^c$ and n^d (where $c > 0$ and $d > 0$ are arbitrary numbers).
Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the following (in increasing order of growth rate):

- \(\Theta(1) \) (constant complexity),
- \(\Theta(\log n) \) (logarithmic complexity),
- \(\Theta(n) \) (linear complexity),
- \(\Theta(n \log n) \) (linearithmic),
- \(\Theta(n \log^k n) \), for some constant \(k \) (quasi-linear),
- \(\Theta(n^2) \) (quadratic complexity),
- \(\Theta(n^3) \) (cubic complexity),
- \(\Theta(2^n) \) (exponential complexity).
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., \(n \rightarrow 2n \)).

- constant complexity: \(T(n) = c \)
- logarithmic complexity: \(T(n) = c \log n \)
- linear complexity: \(T(n) = cn \)
- linearithmic \(\Theta(n \log n) \): \(T(n) = cn \log n \)
- quadratic complexity: \(T(n) = cn^2 \)
- cubic complexity: \(T(n) = cn^3 \)
- exponential complexity: \(T(n) = c2^n \)
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c \quad \leadsto \quad T(2n) = c$.
- **logarithmic complexity:** $T(n) = c \log n$
- **linear complexity:** $T(n) = cn$
- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n$
- **quadratic complexity:** $T(n) = cn^2$
- **cubic complexity:** $T(n) = cn^3$
- **exponential complexity:** $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., \(n \rightarrow 2n \)).

- **constant complexity**: \(T(n) = c \quad \leadsto \quad T(2n) = c \).
- **logarithmic complexity**: \(T(n) = c \log n \quad \leadsto \quad T(2n) = T(n) + c \).
- **linear complexity**: \(T(n) = cn \)
- **linearithmic \(\Theta(n \log n) \)**: \(T(n) = cn \log n \)
- **quadratic complexity**: \(T(n) = cn^2 \)
- **cubic complexity**: \(T(n) = cn^3 \)
- **exponential complexity**: \(T(n) = c2^n \)
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \to 2n$).

- **constant complexity**: $T(n) = c$ $\implies T(2n) = c$.
- **logarithmic complexity**: $T(n) = c \log n$ $\implies T(2n) = T(n) + c$.
- **linear complexity**: $T(n) = cn$ $\implies T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n$
- **quadratic complexity**: $T(n) = cn^2$
- **cubic complexity**: $T(n) = cn^3$
- **exponential complexity**: $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance \textit{doubles} (i.e., \(n \rightarrow 2n\)).

- constant complexity: \(T(n) = c\) \(\implies T(2n) = c\).
- logarithmic complexity: \(T(n) = c \log n\) \(\implies T(2n) = T(n) + c\).
- linear complexity: \(T(n) = cn\) \(\implies T(2n) = 2T(n)\).
- linearithmic \(\Theta(n \log n)\): \(T(n) = cn \log n\) \(\implies T(2n) = 2T(n) + 2cn\).
- quadratic complexity: \(T(n) = cn^2\)
- cubic complexity: \(T(n) = cn^3\)
- exponential complexity: \(T(n) = c2^n\)
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c \quad \Rightarrow \quad T(2n) = c$.
- **logarithmic complexity:** $T(n) = c \log n \quad \Rightarrow \quad T(2n) = T(n) + c$.
- **linear complexity:** $T(n) = cn \quad \Rightarrow \quad T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n \quad \Rightarrow \quad T(2n) = 2T(n) + 2cn$.
- **quadratic complexity:** $T(n) = cn^2 \quad \Rightarrow \quad T(2n) = 4T(n)$.
- **cubic complexity:** $T(n) = cn^3$
- **exponential complexity:** $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c$ \[\Rightarrow T(2n) = c.\]
- **logarithmic complexity:** $T(n) = c \log n$ \[\Rightarrow T(2n) = T(n) + c.\]
- **linear complexity:** $T(n) = cn$ \[\Rightarrow T(2n) = 2T(n).\]
- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n$ \[\Rightarrow T(2n) = 2T(n) + 2cn.\]
- **quadratic complexity:** $T(n) = cn^2$ \[\Rightarrow T(2n) = 4T(n).\]
- **cubic complexity:** $T(n) = cn^3$ \[\Rightarrow T(2n) = 8T(n).\]
- **exponential complexity:** $T(n) = c2^n$
It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c$
 $\Rightarrow T(2n) = c$.

- **logarithmic complexity:** $T(n) = c \log n$
 $\Rightarrow T(2n) = T(n) + c$.

- **linear complexity:** $T(n) = cn$
 $\Rightarrow T(2n) = 2T(n)$.

- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n$
 $\Rightarrow T(2n) = 2T(n) + 2cn$.

- **quadratic complexity:** $T(n) = cn^2$
 $\Rightarrow T(2n) = 4T(n)$.

- **cubic complexity:** $T(n) = cn^3$
 $\Rightarrow T(2n) = 8T(n)$.

- **exponential complexity:** $T(n) = c2^n$
 $\Rightarrow T(2n) = (T(n))^2 / c$.
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis.
- Running time of an algorithm depends on the *input size* n.

```
Test1(n)
1. sum ← 0
2. for $i ← 1$ to $n$ do
3.     for $j ← i$ to $n$ do
4.         sum ← sum + $(i − j)^2$
5.     return sum
```

- Identify *primitive operations* that require $\Theta(1)$ time.
- The complexity of a loop is expressed as the *sum* of the complexities of each iteration of the loop.
- Nested loops: start with the innermost loop and proceed outwards. This gives *nested summations*.
Techniques for Algorithm Analysis

Two general strategies are as follows.

Strategy I: Use Θ-bounds *throughout the analysis* and obtain a Θ-bound for the complexity of the algorithm.

Strategy II: Prove a O-bound and a *matching* $Ω$-bound separately. Use upper bounds (for O-bounds) and lower bounds (for $Ω$-bound) early and frequently. This may be easier because upper/lower bounds are easier to sum.

```
Test2(A, n)
1.   max ← 0
2.   for i ← 1 to n do
3.     for j ← i to n do
4.       sum ← 0
5.       for k ← i to j do
6.         sum ← A[k]
7.   return max
```
Complexity of Algorithms

- Algorithm can have different running times on two instances of the same size.

Let $T_A(I)$ denote the running time of an algorithm A on instance I.

Worst-case complexity of an algorithm: take the worst I

Average-case complexity of an algorithm: average over I
Complexity of Algorithms

Worst-case complexity of an algorithm: The worst-case running time of an algorithm \(\mathcal{A} \) is a function \(f : \mathbb{Z}^+ \rightarrow \mathbb{R} \) mapping \(n \) (the input size) to the *longest* running time for any input instance of size \(n \):

\[
T_A(n) = \max\{ T_A(I) : \text{Size}(I) = n \}.
\]

Average-case complexity of an algorithm: The average-case running time of an algorithm \(\mathcal{A} \) is a function \(f : \mathbb{Z}^+ \rightarrow \mathbb{R} \) mapping \(n \) (the input size) to the *average* running time of \(\mathcal{A} \) over all instances of size \(n \):

\[
T_{\mathcal{A}}^{\text{avg}}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I : \text{Size}(I) = n\}} T_A(I).
\]
O-notation and Complexity of Algorithms

- It is important not to try and make *comparisons* between algorithms using O-notation.

- For example, suppose algorithm A_1 and A_2 both solve the same problem, A_1 has worst-case run-time $O(n^3)$ and A_2 has worst-case run-time $O(n^2)$.

- Observe that we *cannot* conclude that A_2 is more efficient than A_1 for all input!

 1. The worst-case run-time may only be achieved on some instances.
 2. O-notation is an upper bound. A_1 may well have worst-case run-time $O(n)$. If we want to be able to compare algorithms, we should always use Θ-notation.
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Design of MergeSort

Input: Array A of n integers

- **Step 1:** We split A into two subarrays: A_L consists of the first $\left\lceil \frac{n}{2} \right\rceil$ elements in A and A_R consists of the last $\left\lfloor \frac{n}{2} \right\rfloor$ elements in A.

- **Step 2:** *Recursively* run *MergeSort* on A_L and A_R.

- **Step 3:** After A_L and A_R have been sorted, use a function *Merge* to merge them into a single sorted array.
MergeSort

\[
\text{MergeSort}(A, \ell \leftarrow 0, r \leftarrow n - 1, S \leftarrow \text{NIL})
\]

* A: array of size \(n \), \(0 \leq \ell \leq r \leq n - 1

1. \textbf{if } S \text{ is NIL } \textbf{ then } \text{ initialize it as array } S[0..n-1]
2. \textbf{if } (r \leq \ell) \text{ then } \text{ return }
3. \textbf{else}
4. \quad m = (r + \ell)/2
5. \quad \text{MergeSort}(A, \ell, m, S)
6. \quad \text{MergeSort}(A, m + 1, r, S)
7. \quad \text{Merge}(A, \ell, m, r, S)

Two tricks to reduce run-time and auxiliary space:

- The recursion uses parameters that indicate the range of the array that needs to be sorted.
- The array used for copying is passed along as parameter.
Merge

\[
\text{Merge}(A, \ell, m, r, S)
\]

\(A[0..n-1]\) is an array, \(A[\ell..m]\) is sorted, \(A[m+1..r]\) is sorted

\(S[0..n-1]\) is an array

1. copy \(A[\ell..r]\) into \(S[\ell..r]\)
2. \(\text{int } i_L \leftarrow \ell; \text{ int } i_R \leftarrow m + 1;\)
3. for \((k \leftarrow \ell; k \leq r; k++)\) do
4. \(\text{ if } (i_L > m) \ A[k] \leftarrow S[i_R++]\)
5. \(\text{ else if } (i_R > r) \ A[k] \leftarrow S[i_L++]\)
6. \(\text{ else if } (S[i_L] \leq S[i_R]) \ A[k] \leftarrow S[i_L++]\)
7. \(\text{ else } A[k] \leftarrow S[i_R++]\)

\textbf{Merge} takes time \(\Theta(r - \ell + 1)\), i.e., \(\Theta(n)\) time for merging \(n\) elements.
Analysis of MergeSort

Let $T(n)$ denote the time to run MergeSort on an array of length n.

- Step 1 takes time $\Theta(n)$
- Step 2 takes time $T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor)$
- Step 3 takes time $\Theta(n)$

The recurrence relation for $T(n)$ is as follows:

$$T(n) = \begin{cases}
T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1.
\end{cases}$$

It suffices to consider the following exact recurrence, with constant factor c replacing Θ’s:

$$T(n) = \begin{cases}
T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + cn & \text{if } n > 1 \\
c & \text{if } n = 1.
\end{cases}$$
Analysis of MergeSort

- The following is the corresponding sloppy recurrence (it has floors and ceilings removed):
 \[
 T(n) = \begin{cases}
 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
 c & \text{if } n = 1.
 \end{cases}
 \]

- The exact and sloppy recurrences are identical when \(n \) is a power of 2.

- The recurrence can easily be solved by various methods when \(n = 2^j \). The solution has growth rate \(T(n) \in \Theta(n \log n) \).

- It is possible to show that \(T(n) \in \Theta(n \log n) \) for all \(n \) by analyzing the exact recurrence.
Some Recurrence Relations

<table>
<thead>
<tr>
<th>Recursion</th>
<th>resolves to</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n/2) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\log n)$</td>
<td>Binary search</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + \Theta(n)$</td>
<td>$T(n) \in \Theta(n \log n)$</td>
<td>Mergesort</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + \Theta(\log n)$</td>
<td>$T(n) \in \Theta(n)$</td>
<td>Heapify (→ later)</td>
</tr>
<tr>
<td>$T(n) = T(cn) + \Theta(n)$ for some $0 < c < 1$</td>
<td>$T(n) \in \Theta(n)$</td>
<td>Selection (→ later)</td>
</tr>
<tr>
<td>$T(n) = 2T(n/4) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\sqrt{n})$</td>
<td>Range Search (→ later)</td>
</tr>
<tr>
<td>$T(n) = T(\sqrt{n}) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\log \log n)$</td>
<td>Interpolation Search (→ later)</td>
</tr>
</tbody>
</table>

- Once you know the result, it is (usually) easy to prove by induction.
- Many more recursions, and some methods to find the result, in cs341.
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Order Notation Summary

O-notation: $f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$.

Ω-notation: $f(n) \in \Omega(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $c |g(n)| \leq |f(n)|$ for all $n \geq n_0$.

Θ-notation: $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $c_1 |g(n)| \leq |f(n)| \leq c_2 |g(n)|$ for all $n \geq n_0$.

o-notation: $f(n) \in o(g(n))$ if for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$.

ω-notation: $f(n) \in \omega(g(n))$ if for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $c |g(n)| \leq |f(n)|$ for all $n \geq n_0$.
Useful Sums

Arithmetic sequence:
\[\sum_{i=0}^{n-1} i = ??? \]
\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \quad \text{if } d \neq 0. \]

Geometric sequence:
\[\sum_{i=0}^{n-1} 2^i = ??? \]
\[\sum_{i=0}^{n-1} a r^i = \begin{cases}
 a \frac{r^n - 1}{r - 1} & \in \Theta(r^{n-1}) \quad \text{if } r > 1 \\
 na & \in \Theta(n) \quad \text{if } r = 1 \\
 a \frac{1 - r^n}{1 - r} & \in \Theta(1) \quad \text{if } 0 < r < 1.
\end{cases} \]

Harmonic sequence:
\[\sum_{i=1}^{n} \frac{1}{i} = ??? \]
\[H_n := \sum_{i=1}^{n} \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n) \]

A few more:
\[\sum_{i=1}^{n} \frac{1}{i^2} = ??? \]
\[\sum_{i=1}^{n} \frac{1}{i^2} = \frac{\pi^2}{6} \in \Theta(1) \]
\[\sum_{i=1}^{n} i^k = ??? \]
\[\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}) \quad \text{for } k \geq 0 \]
Useful Math Facts

Logarithms:
- \(c = \log_b(a) \) means \(b^c = a \). E.g. \(n = 2^{\log n} \).
- \(\log(a) \) (in this course) means \(\log_2(a) \)
- \(\log(a \cdot c) = \log(a) + \log(c) \), \(\log(a^c) = c \log(a) \)
- \(\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)} \), \(a^{\log_b c} = c^{\log_b a} \)
- \(\ln(x) = \text{natural log} = \log_e(x) \), \(\frac{d}{dx} \ln x = \frac{1}{x} \)
- concavity: \(\alpha \log x + (1-\alpha) \log y \leq \log(\alpha x + (1-\alpha) y) \) for \(0 \leq \alpha \leq 1 \)

Factorial:
- \(n! := n(n-1)(n-2) \cdots 2 \cdot 1 = \) # ways to permute \(n \) elements
- \(\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n) \)

Probability and moments:
- \(E[aX] = aE[X] \), \(E[X + Y] = E[X] + E[Y] \) (linearity of expectation)