Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
Outline

1 Dictionaries and Balanced Search Trees
 • ADT Dictionary
 • Review: Binary Search Trees
 • AVL Trees
 • Insertion in AVL Trees
 • Restoring the AVL Property: Rotations
Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which contains

- a *key*
- some *data* (the “value”)

and is called a *key-value pair* (KVP). Keys can be compared and are (typically) unique.

Operations:

- `search(k)` (also called `findElement(k)`)
- `insert(k, v)` (also called `insertItem(k, v)`)
- `delete(k)` (also called `removeElement(k)`)

optional: `closestKeyBefore`, `join`, `isEmpty`, `size`, etc.

Examples: symbol table, license plate database
Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space
 (if not, the “value” could be a pointer)
- Keys can be compared in constant time

Unordered array or linked list

- **search** \(\Theta(n) \)
- **insert** \(\Theta(1) \) (except array occasionally needs to resize)
- **delete** \(\Theta(n) \) (need to search)

Ordered array

- **search** \(\Theta(\log n) \) (via binary search)
- **insert** \(\Theta(n) \)
- **delete** \(\Theta(n) \)
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
Binary Search Trees (review)

Structure
Binary tree: all nodes have two (possibly empty) subtrees
Every node stores a KVP
Empty subtrees usually not shown

Ordering
Every key k in $T.left$ is less than the root key.
Every key k in $T.right$ is greater than the root key.

In our examples we only show the keys, and we show them directly in the node. A more accurate picture would be (key = 15, <other info>)
BST as realization of ADT Dictionary

BST::search(\(k\)) Start at root, compare \(k\) to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: *BST::search*(24)
BST as realization of ADT Dictionary

\[BST::search(k) \] Start at root, compare \(k \) to current node’s key. Stop if found or subtree is empty, else recurse at subtree.

Example: \(BST::search(24) \)
BST as realization of ADT Dictionary

\textit{BST::search(}k\textit{)} Start at root, compare \textit{k} to current node’s key. Stop if found or subtree is empty, else recurse at subtree.

Example: \textit{BST::search(}24\textit{)}

![BST Diagram]

- 15
 - 6
 - 10
 - 8
 - 14
 - 25
 - 23
 - 29
 - 27
 - 50
BST as realization of ADT Dictionary

BST::search\((k)\) Start at root, compare \(k\) to current node’s key. Stop if found or subtree is empty, else recurse at subtree.

Example: **BST::search**\((24)\)
BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
 Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: **BST::insert**$(24, v)$

![BST Diagram](image)
Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
Deletion in a BST

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

![BST Diagram]

```
Levels: 6, 10, 23, 22, 8, 14, 24, 25, 29, 50
```
Deletion in a BST

- First search for the node \(x \) that contains the key.
- If \(x \) is a leaf (both subtrees are empty), delete it.
- If \(x \) has one non-empty subtree, move child up
Deletion in a BST

- First search for the node \(x \) that contains the key.
- If \(x \) is a leaf (both subtrees are empty), delete it.
- If \(x \) has one non-empty subtree, move child up
- Else, swap key at \(x \) with key at successor or predecessor node and then delete that node
Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node
Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node
Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where $h =$ height of the tree $=$ max. path length from root to leaf.

If n items are inserted one-at-a-time, how big is h?

- **Worst-case:**

\[n - 1 = \Theta(n) \]

\[\Theta(\log n) \]

Any binary tree with n nodes has height $\geq \log(n + 1) - 1$.

Average-case:

Can show $\Theta(\log n)$
Height of a BST

`BST::search`, `BST::insert`, `BST::delete` all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n - 1 = \Theta(n)$
- Best-case:
Height of a BST

\textit{BST::search, BST::insert, BST::delete} all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n - 1 = \Theta(n)$
- Best-case: $\Theta(\log n)$.
 Any binary tree with n nodes has height $\geq \log(n + 1) - 1$
- Average-case:
Height of a BST

BST::search, BST::insert, BST::delete all have cost \(\Theta(h) \), where \(h = \text{height of the tree} = \text{max. path length from root to leaf} \)

If \(n \) items are inserted one-at-a-time, how big is \(h \)?

- **Worst-case:** \(n - 1 = \Theta(n) \)
- **Best-case:** \(\Theta(\log n) \).
 - Any binary tree with \(n \) nodes has height \(\geq \log(n + 1) - 1 \)
- **Average-case:** Can show \(\Theta(\log n) \)
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
AVL Trees

Introduced by Adel’son-Vel’skiĭ and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

Rephrase: If node v has left subtree L and right subtree R, then

$$\text{balance}(v) := \text{height}(R) - \text{height}(L) \text{ must be in } \{-1, 0, 1\}$$

- $\text{balance}(v) = -1$ means v is **left-heavy**
- $\text{balance}(v) = +1$ means v is **right-heavy**
AVL Trees

Introduced by Adel’son-Vel’skiǐ and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

Rephrase: If node v has left subtree L and right subtree R, then

$$\text{balance}(v) := \text{height}(R) - \text{height}(L) \text{ must be in } \{-1, 0, 1\}$$

- $\text{balance}(v) = -1$ means v is **left-heavy**
- $\text{balance}(v) = +1$ means v is **right-heavy**

- Need to store at each node v the height of the subtree rooted at it
- Can show: It suffices to store $\text{balance}(v)$ instead
 - uses fewer bits, but code gets more complicated
AVL tree example

(The lower numbers indicate the height of the subtree.)
AVL tree example

Alternative: store balance (instead of height) at each node.
Height of an AVL tree

Theorem: An AVL tree on n nodes has $\Theta(\log n)$ height.

⇒ *search, insert, delete* all cost $\Theta(\log n)$ in the *worst case!*

Proof:

- Define $N(h)$ to be the *least* number of nodes in a height-h AVL tree.
- What is a recurrence relation for $N(h)$?
- What does this recurrence relation resolve to?
Dictionaries and Balanced Search Trees
- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations
AVL insertion

To perform $AVL::insert(k, v)$:

- First, insert (k, v) with the usual BST insertion.
- We assume that this returns the new leaf z where the key was stored.
- Then, move up the tree from z, updating heights.
 - We assume for this that we have parent-links. This can be avoided if $BST::Insert$ returns the full path to z.
- If the height difference becomes ± 2 at node z, then z is unbalanced. Must re-structure the tree to rebalance.
AVL insertion

\[
\text{AVL::insert}(k, v)
\]

1. \(z \leftarrow \text{BST::insert}(k, v) \) \ // leaf where \(k \) is now stored
2. while (\(z \) is not NIL)
3. \(\text{if } (|z.\text{left.height} - z.\text{right.height}| > 1) \text{ then} \)
4. \(\text{Let } y \text{ be taller child of } z \)
5. \(\text{Let } x \text{ be taller child of } y \) (break ties to prefer single rotation)
6. \(z \leftarrow \text{restructure}(x, y, z) \) \ // see later
7. \(\text{break} \) \ // can argue that we are done
8. \(\text{setHeightFromSubtrees}(z) \)
9. \(z \leftarrow z.\text{parent} \)

\[
\text{setHeightFromSubtrees}(u)
\]

1. \(u.\text{height} \leftarrow 1 + \max\{u.\text{left.height}, u.\text{right.height}\} \)
AVL Insertion Example

Example: \texttt{AVL::insert}(8)
AVL Insertion Example

Example: `AVL::insert(8)`
AVL Insertion Example

Example: \texttt{AVL::insert(8)}
AVL Insertion Example

Example: \texttt{AVL::insert(8)}
Outline

1. **Dictionaries and Balanced Search Trees**
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
How to “fix” an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

Goal: change the *structure* among three nodes without changing the *order* and such that the subtree becomes balanced.
Right Rotation
This is a right rotation on node z:

\[
\begin{align*}
\text{rotate-right}(z) \\
1. & \quad y \leftarrow z.\text{left}, z.\text{left} \leftarrow y.\text{right}, y.\text{right} \leftarrow z \\
2. & \quad \text{setHeightFromSubtrees}(z), \text{setHeightFromSubtrees}(y) \\
3. & \quad \text{return } y // \text{returns new root of subtree}
\end{align*}
\]
Why do we call this a rotation?
Left Rotation

Symmetrically, this is a left rotation on node z:

Again, only two links need to be changed and two heights updated. Useful to fix right-right-right imbalance.
Double Right Rotation

This is a **double right rotation** on node z:

First, a left rotation at y.
Double Right Rotation

This is a double right rotation on node z:

First, a left rotation at y.
Second, a right rotation at z.

Diagram showing the two rotations and the result.
Double Left Rotation

Symmetrically, there is a **double left rotation** on node z:

First, a right rotation at y.
Second, a left rotation at z.
Fixing a slightly-unbalanced AVL tree

```plaintext
restructure(x, y, z)  
node x has parent y and grandparent z

1. case
   z: // Right rotation  
      return rotate-right(z)

   z: // Double-right rotation  
      z.left ← rotate-left(y)  
      return rotate-right(z)

   z: // Double-left rotation  
      z.right ← rotate-right(y)  
      return rotate-left(z)

   z: // Left rotation  
      return rotate-left(z)
```

Rule: The middle key of \(x, y, z \) becomes the new root.
AVL Insertion Example revisited

Example: $\textit{AVL}::\text{insert}(8)$
AVL Insertion Example revisited

Example: \texttt{AVL::insert}(8)
AVL Insertion: Second example

Example: `AVL::insert(45)`
AVL Insertion: Second example

Example: \textit{AVL::insert}(45)
AVL Insertion: Second example

Example: $AVL::insert(45)$
Example: `AVL::insert(45)`
AVL Insertion: Second example

Example: `AVL::insert(45)`
AVL Deletion

Remove the key k with $BST::delete$.

Find node where structural change happened.

(This is not necessarily near the node that had k.)

Go back up to root, update heights, and rotate if needed.

\begin{verbatim}
AVL::delete(k)
1. z ← BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NIL)
4. if (|z.left.height − z.right.height| > 1) then
5. Let y be taller child of z
6. Let x be taller child of y (break ties to prefer single rotation)
7. z ← restructure(x, y, z)
8. // Always continue up the path and fix if needed.
9. setHeightFromSubtrees(z)
10. z ← z.parent
\end{verbatim}
AVL Deletion Example

Example: $\textit{AVL::delete}(22)$

![AVL Tree Diagram](https://example.com/avl_tree_diagram.png)
AVL Deletion Example

Example: $AVL::\text{delete}(22)$
AVL Deletion Example

Example: *AVL::delete*(22)
Example: `AVL::delete(22)`
AVL Deletion Example

\textbf{Example: } \texttt{AVL::delete}(22)
AVL Deletion Example

Example: `AVL::delete(22)`
AVL Deletion Example

Example: $\text{AVL}::\text{delete}(22)$
AVL Tree Operations Runtime

search: Just like in BSTs, costs $\Theta(height)$

insert: $BST::insert$, then check & update along path to new leaf
- total cost $\Theta(height)$
- $AVL-fix$ restores the height of the subtree to what it was,
- so $AVL-fix$ will be called *at most once*.

delete: $BST::delete$, then check & update along path to deleted node
- total cost $\Theta(height)$
- $AVL-fix$ may be called $\Theta(height)$ times.

Worst-case cost for all operations is $\Theta(height) = \Theta(\log n)$.

But in practice, the constant is quite large.