1. Let $0 < \epsilon < 1$. Suppose that we have an array A of n items such that the first $n - n' \epsilon$ items are sorted. Describe an $O(n)$ time algorithm to sort A.

2. Give the best-case, worst-case, best-case expected and worst-case expected runtime of the following function:

 Algorithm 1: IsSortedGuess($A, 0$)

 Input: Array A of n nonnegative integers, integer $currmax$ which is initially set to 0

 Output: A guess on whether A is sorted or not.

 1. if $n == 0$ then
 2. Return “Probably Sorted”;
 3. end
 4. $i \leftarrow random(n)$;
 5. if $A[i] \geq currmax$ then
 6. $currmax \leftarrow A[i]$;
 7. Return IsSortedGuess($A[i+1...n], currmax$);
 8. end
 9. Return “Definitely Not Sorted”;

3. We have an array A of n non-negative integers such that each integer is less than k. Give an $O(n + k)$ time preprocessing algorithm such that queries of the form “how many integers are there in A that are in the range $[a, b]$?” can be answered in $O(1)$ time. Note that a and b are not fixed; they are parameters given to the query algorithm.