Key Concepts

- A **priority queue** is a collection of items with associated priorities.

- Operations for priority queues:
 - **INSERT**: inserts item
 - **DELETEMAX/DELETEMIN**: deletes item with max/min priority

- A **max-heap** is a tree with two properties: structural property (all levels, except possibly the last, are filled and the last level is left-justified) and heap-order property (for all keys i, priority of the parent of $i \geq$ priority of i).

- A **min-heap** is the same as a max-heap structurally, but the heap-order property is reversed (\leq).

- Building heaps:
 - Start with empty heap, insert items one at a time – $\Theta(n \log(n))$
 - Use bubble-downs – $\Theta(n)$

- Operations for heaps:
 - **INSERT**: add item to leftmost empty spot, bubble-up if needed – $O(\log(n))$
 - **DELETEMAX/DELETEMIN**: swap root and rightmost leaf, remove, bubble-down if needed – $O(\log(n))$

- Sorting using priority queues/heaps (PQ-sort/heapsort) – $O(n \log(n))$

Suggested Readings

- **Sedgewick**: 5.5 (Mathematical Properties of Trees), 9.1 (Elementary Implementations), 9.2 (Heap Data Structure), 9.3 (Algorithms on Heaps), 9.4 (Heapsort)

- **CLRS**: Chapter 6 (Heapsort)

- **Goodrich/Tamassia**: 2.4 (Priority Queues and Heaps)
Practice Questions

Sedgewick

9.1. A letter means insert and an asterisk means remove the maximum in the sequence

```
P R I O * R * * I * T * Y * * * Q U E * * * U * E.
```

Give the sequence of values returned by the remove the maximum operations.

9.3. Explain how to use a priority queue ADT to implement a stack ADT.

9.4. Explain how to use a priority queue ADT to implement a queue ADT.

9.17. Is an array that is sorted in descending order a heap?

9.33. For \(n = 32 \), give an arrangement of keys that makes heapsort use as many comparisons as possible.

9.34. For \(n = 32 \), give an arrangement of keys that makes heapsort use as few comparisons as possible.

CLRS

6.1-1. What are the minimum and maximum numbers of elements in a heap of height \(h \)?

6.1-4. Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

6.1-6. Is the sequence \(\langle 23, 17, 14, 6, 13, 10, 1, 5, 7, 12 \rangle \) a max-heap?

6.2-5. The code for \texttt{Max-Heapify} is quite efficient in terms of constant factors, except possibly for the recursive call in line 10, which might cause some compilers to produce inefficient code. Write an efficient \texttt{Max-Heapify} that uses an iterative control construct (a loop) instead of recursion.

```
\texttt{Max-Heapify}(A, i, n)
\begin{align*}
    l & = \texttt{Left}(i) \\
    r & = \texttt{Right}(i) \\
    \textbf{if} & \ l \leq n \ \textbf{and} \ A[l] > A[i] \\
        & \quad \text{\texttt{largest} = } l \\
    \textbf{else} & \ \texttt{largest} = i \ \\
    \textbf{if} & \ r \leq n \ \textbf{and} \ A[r] > A[\texttt{largest}] \\
        & \quad \texttt{largest} = r \\
    \textbf{if} & \ \texttt{largest} \neq i \\
        & \quad \text{\texttt{exchange} } A[i] \ \textbf{with} \ A[\texttt{largest}] \\
        & \quad \texttt{MAX-Heapify}(A, \texttt{largest}, n)
\end{align*}
```

6.2-6. Show that the worst-case running time of \texttt{Max-Heapify} on a heap of size \(n \) is \(\Omega(\log(n)) \). (\textit{Hint:} For a heap with \(n \) nodes, give node values that cause \texttt{Max-Heapify} to be called recursively at every node on a path from the root down to a leaf.)

6.4-1. Using Figure 6.4 as a model, illustrate the operation of heapsort on the array \(A = \langle 5, 13, 2, 25, 7, 17, 20, 8, 4 \rangle \).
Figure 6.4: An example of the operation of heapsort after the max-heap is initially built.
6.4-3. What is the running time of heapsort on an array A of length n that is already sorted in increasing order? What about decreasing order?

6.4-4. Show that the worst-case running time of heapsort is $\Omega(n \log(n))$.

6.2. A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have d children instead of 2 children.

(a) How would you represent a d-ary heap in an array?
(b) What is the height of a d-ary heap of n elements in terms of n and d?
(c) Give an efficient implementation of DeleteMax in a d-ary max-heap. Analyze its running time in terms of d and n.
(d) Give an efficient implementation of Insert in a d-ary max-heap. Analyze its running time in terms of d and n.
(e) Give an efficient implementation of Heap-Increase-Key, which first sets $A[i] \leftarrow \max(A[i], \text{key})$ and then updates the d-ary max-heap structure appropriately. Analyze its running time in terms of d and n.

Goodrich/Tamassia

R-2.14. Is there a heap T storing seven distinct elements such that a preorder traversal of T yields the elements of T in sorted order? How about an inorder traversal? How about a postorder traversal?